Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
01fa2fe9
Commit
01fa2fe9
authored
Feb 11, 2024
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
8e4dd8e0
Pipeline
#18044
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
34 deletions
+0
-34
cheatsheet.fr.md
...systems-modeling/10.predator-prey-models/cheatsheet.fr.md
+0
-34
No files found.
12.temporary_ins/32.sets-systems/30.n3/40.systems-modeling/10.predator-prey-models/cheatsheet.fr.md
View file @
01fa2fe9
...
...
@@ -631,37 +631,3 @@ L'une représente des proies et l'autre des prédateurs.
(limitation des ressources à travers modélisée par une croissance)
<!----------------
<br>
modèle "proie-prédateur" de Lotka-Volterra*
* Système d'ordre 1 et de dimension 2 (une première approche dynamique des populations ou un cours transverse sur les systèmes)
* **$`
\l
eft
\{\b
egin{array}{l}
\d
frac{dx}{dt} = f(x,y)
\\
\d
frac{dy}{dt}=g(x,y)
\e
nd{array}
\r
ight.
`$**
avec par exemple le modèle proies prédateurs de Lotka-Volterra : $`
f(x,y)= a
\c
dot x -b
\c
dot xy
`$ et $`
f(x,y)= - c
\c
dot x +d
\c
dot xy
`$ (à ce niveau 3?)
----------
##### Croissance par division
* Effectif population initiale : $`
N_0
`$
* En absence de mortalité, effectif de chaque génération :
* $`
N_1=2
\t
imes N_0=2
\,
N_0
`$
* $`
N_2=2
\t
imes N_1=2^2
\,
N_0
`$
* $`
N_3=2
\t
imes N_2=2^3
\,
N_0
`$
* \dots
* $`
N_i=2
\t
imes N_{i-1}=2^i
\,
N_0
`$
* Temps de génération $`
G
`$
$`
\q
uad G=
\d
frac{
\t
ext{intervalle de temps}}{
\u
nderbrace{
\t
ext{nombre de division}}_{
\g
e
\;
1}
\t
ext{ d'une cellule initiale}}
`
$
--
<br>
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment