Commit 08ec6b07 authored by Claude Meny's avatar Claude Meny

Update textbook.en.md

parent fd4e52f6
Pipeline #993 failed with stage
in 22 seconds
......@@ -759,7 +759,7 @@ Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{E} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS}` = \Phi_E`$
\oiint_{S\leftrightarrow\tau} \overrightarrow{E}\cdot\overrightarrow{dS} = \Phi_E`$
$`\Phi_E`$ : Flujo eléctrico /
......@@ -789,7 +789,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= fem = \mathcal{C}_E`$
$`\mathcal{C}_E` = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido*
$`\mathcal{C}_E = fem = \mathcal{E}`$ : circulación del campo eléctrico = *fuerza electromotriz = voltaje inducido*
$`fem = \mathcal{C}_E = \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment