Commit 0940fd9c authored by Claude Meny's avatar Claude Meny

Update...

Update 12.temporary_ins/44.relativity/30.n3/10.special-relativity/20.framework-of-special-relativity/20.overview/cheatsheet.fr.md
parent 320bd203
Pipeline #14253 canceled with stage
......@@ -35,3 +35,46 @@ lessons:
##### Un ESPACE-TEMPS, de la MATIÈRE-ÉNERGIE
RÉSUMÉ
: ---
*Cadre de la relativité restreinte* :
__La scène :__
Un espace-temps minskovskien,
$`\Longrightarrow`$ un invariant : l'intervalle $`\mathscr{s}_{AB}`$ entre deux évènements $`A`$ et $`B`$.
$`\Longrightarrow`$ il existe des systèmes de coordonnées de Minkovsky $`(O,x,y,z,t)`$ tels que
par définition $`\mathscr{s}_{AB}``$$`=\sqrt{c^2(t_B-t_A)^2-(x_B-x_A)^2-(y_B-y_A)^2-(z_B-z_A)^2}`$
__Les acteurs :__
\- Des évènements repérés par leurs coordonnées spatio-temporelles $`(x,y,z,t)`$,
\- Des corps dont les mouvements sont caractérisés par leurs lignes d'univers.
*Écriture d'un référentiel $`\mathscr{R}`$* :
$`\mathscr{R}(O,x,y,z,t)`$ où $`(O,x,y,z)`$ est un système de coordonnées de Minkovsky, immobile dans $`\mathscr{R}`$
*Référentiel galiléen ou d'inertie* :
$``\Longleftrightarrow`$ un corps isolé est immobile ou animé d'un mouvement rectiligne uniforme,
soit (équivalent)
dont la ligne d'univers représentés dans un système d'axe de Minkovski est une droite.
*Lois de transformation de Lorentz :
Soient un référentiel galiléen $`\mathscr{R}(O,x,y,z,t)`$ et un référentiel $`\mathscr{R}(O',x',y',z',t')'`$ en translation rectiligne selon $`Ox`$ et uniforme à la vitesse $`V`$ par rapport à $`\mathscr{R}`$.
$`\mathscr{R}`$ et $`\mathscr{R}'`$ ont :
\- une même origine des temps et même unité de mesure des temps $`\Longrightarrow\;t=t'`$
\- une même origine de l'espace à $`t=t'=0\;,\quad\Longrightarrow\;O=O'`$.
\- une même unité de mesure des longueurs.
Alors pour un corps de position $`(x,y,z)`$ et de vitesse $`(\mathscr{v}_x,\mathscr{v}_y,\mathscr{v}_z)`$
à tout instant $`t`$ dans $`\mathscr{R}`$ :
__Transformation des positions__:
$`x'=x+Vt\;,\,y'=y\;,\;z'=z`$
__Transformation des vitesses__:
$`\mathscr{v}_x'=\mathscr{v}_x+V\;,\; \mathscr{v}_y'=\mathscr{v}_y\;,\;\mathscr{v}_z'=\mathscr{v}_z`$
__Transformation des accélérations__:
$`a_x'=a_x\;,\;a_y'=a_y\;,\;a_z'=a_z`$
Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel
galiléen ets lui-même galiléen.
##### Suite
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment