Commit 106c82b2 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 53a2b3c0
Pipeline #15976 canceled with stage
......@@ -1602,7 +1602,7 @@ $`\quad\quad \;\; = \cdots`$
$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\,\theta_{moy}\;cos\,\Delta\theta_{12}\\
&-\,2\,\Delta A_{1-2}\,\,sin\,\theta_{moy}\;sin\,\Delta\theta_{12}\end{array}`$
<br>
**$`\mathbf{\boldsymbol{\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
**$`\begin{array}\mathbf{\boldsymbol{\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,cos\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)\\
&-\,2\,\Delta A_{1-2}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,sin\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)
......@@ -1652,7 +1652,7 @@ $`\quad\quad \;\; = \cdots`$
<br>
**$`\quad\quad\;\;=\,\theta_{moy}(\overrightarrow{r},t)\,-\,\theta_{12}(\overrightarrow{r},t)`$**
@@@@@@@@@@@@@@@
* *Travaillons* les **termes $`exp\,i\theta_1\,+\,exp\,i\theta_2\;`$ et $`\;exp\,i\theta_1\,-\,exp\,i\theta_2`$** qui interviennent
dans l'expression de $`\underline{U}(\vec{r},t)`$ :
......@@ -1678,16 +1678,16 @@ $`\quad\quad \;\; = \cdots`$
<br>
**$`exp\,i\theta_1\,-\,exp\,i\theta_2`$**
<br>
$`\quad\quad =\;e^{\,i\,(\theta_{moy}+\Delta\theta_{12})}\,-\,e^{\,i\,(\theta_{moy}-\Delta\theta_{12})}`$
$`\quad\;\; =\;e^{\,i\,(\theta_{moy}+\theta_{12})}\,-\,e^{\,i\,(\theta_{moy}-\theta_{12})}`$
<br>
$`\quad\;\; = e^{\,i\,\theta_{moy}}\,\big(e^{\,i\,\theta_{12}}\,-\,e^{-\,i\,\theta_{12}}\big)`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &exp(ia)\,=\, cos\,a\,+\,i\, sin\,a\\
&exp(-ia)\,=\, cos\,a\,-\,i\, sin\,a\end{align}
\right\}\Longrightarrow\\
\quad\quad exp(ia)\,-\,exp(-ia)\,=\,-2i\,sin\,a}}`$
\quad\quad exp(ia)\,-\,exp(-ia)\,=\,+ 2i\,sin\,a}}`$
<br>
**$`\quad\;\; = -2i\;sin\,\theta_{12}\cdot e^{\,i\,\theta_{moy}}`$**
**$`\quad\;\; = 2i\;sin\,\theta_{12}\cdot e^{\,i\,\theta_{moy}}`$**
<br>
* Nous obtenons l'**expression complexe** de l'onde résultante de la *superposition de deux OPPH* quelconques :
......@@ -1698,40 +1698,37 @@ $`\quad\quad \;\; = \cdots`$
&+ A_2\,exp\big[\,i\,\big(\underbrace{\omega_2 t + \overrightarrow{k}_2\cdot\overrightarrow{r}+\varphi_2}_{\color{blue}{\theta_2(\vec{r},t)}}\big)\big]\end{array}`$
<br>
**$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\,\theta_{12}\cdot e^{\,i\,\theta_{moy}}\\
&-\,2i\,\Delta A_{1-2}\,sin\,\theta_{12}\cdot e^{\,i\,\theta_{moy}}\end{array}`$**
&+\,2i\,\Delta A_{1-2}\,sin\,\theta_{12}\cdot e^{\,i\,\theta_{moy}}\end{array}`$**
<br>
* L'**onde réelle** est la *partie réelle de l'onde complexe* :
<br>
**$`\mathbf{U(\overrightarrow{r},t)\,=\,\mathscr{R}e\big[\underline{U}(\overrightarrow{r},t)\big]}`$**
<br>
$`\begin{align}\; = \;&\mathscr{R}e\big[\,2\,A_{moy}\,cos(\theta_{12})\; e^{\,i\,\theta_{moy}}\\
&-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\; e^{\,i\,\theta_{moy}}\big]\end{align}`$
$`\begin{align}\; = \;&\mathscr{R}e\big[\,2\,A_{moy}\,cos\,\theta_{12}\; e^{\,i\,\theta_{moy}}\\
&+\,2i\,\Delta A_{1-2}\,sin\,\theta_{12}\; e^{\,i\,\theta_{moy}}\big]\end{align}`$
<br>
$`\color{blue}{\scriptsize{\quad\text{Utilisons }\;exp(ia)\,=\, cos\,a\,+\,i\, sin\,a}}`$
<br>
$`\begin{align}\;= \;&\mathscr{R}e \big[\,2\,A_{moy}\,cos(\theta_{12})\;(cos\,\theta_{moy}\,+\,i\,sin\,\theta_{moy})\\
&-\,2i\,\Delta A_{1-2}\,sin(\theta_{12})\;(cos\,\theta_{moy}\,+\,i\,sin\,\theta_{moy})\big]\end{align}`$
$`\begin{align}\;= \;&\mathscr{R}e \big[\,2\,A_{moy}\,cos\,\theta_{12}\;(cos\,\theta_{moy}\,+\,i\,sin\,\theta_{moy})\\
&+\,2i\,\Delta A_{1-2}\,sin\,\theta_{12}\;(cos\,\theta_{moy}\,+\,i\,sin\,\theta_{moy})\big]\end{align}`$
<br>
$`\; \begin{align}= & 2\times\mathscr{R}e \big[ \\
&\,(\,A_{moy}\,cos\,\theta_{12}\;cos\,\theta_{moy}\,+\,\Delta A_{1-2}\,sin\,\theta_{12}\;sin\,\theta_{moy}\,) \\
&\,+\,i\,(\,A_{moy}\,cos\,\theta_{12}\;sin\,\theta_{moy}\,-\,\Delta A_{1-2}\,sin\,\theta_{12}\;sin\,\theta_{moy}\,)\big] \\
$`\; \begin{align}= & 2\times\\
&\mathscr{R}e \big[(\,A_{moy}\,cos\,\theta_{12}\;cos\,\theta_{moy}\,-\,\Delta A_{1-2}\,sin\,\theta_{12}\;sin\,\theta_{moy}\,) \\
&\,+\,i\,(\,A_{moy}\,cos\,\theta_{12}\;sin\,\theta_{moy}\,+\,\Delta A_{1-2}\,sin\,\theta_{12}\;cos\,\theta_{moy}\,)\big] \\
\end{align}`$
**$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
**$`\begin{array}\mathbf{\boldsymbol{\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,cos\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)\\
&-\,2\,\Delta A_{1-2}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,sin\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)
\end{array}`$**
\end{array}}}`$**
<br>
@@@@@@@@@@@@@@@
---------------------
<br>
#### Retour sur quelques cas particuliers
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment