Commit 12aae13b authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent f13ce5a3
Pipeline #13219 canceled with stage
......@@ -474,22 +474,6 @@ $`\color{brown}{\large{\mathbf{\mathcal{E}^{cin}=\dfrac{m\,\mathscr{v}^2}{2}}}}\
<br>
$`\begin{align}
\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B d\left(\dfrac{m\,\mathscr{v}^2}{2}\right)\\
\end{align}`$
<br>
$`\begin{align}
\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B d\left(\dfrac{m\,\mathscr{v}^2}{2}\right)\\
& =\int_A^B d\mathcal{E}^{cin}\\
\end{align}`$
<br>
$`\begin{align}
\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B d\left(\dfrac{m\,\mathscr{v}^2}{2}\right)\\
& =\int_A^B d\mathcal{E}^{cin}\\
\\
& \color{brown}{\large{\mathbf{\;=\mathcal{E}^{cin}(B)-\mathcal{E}^{cin}(A)}}}\\
\\
<br>
$`\begin{align}
\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B d\left(\dfrac{m\,\mathscr{v}^2}{2}\right)\\
& =\int_A^B d\mathcal{E}^{cin}\\
\\
& \color{brown}{\large{\mathbf{\;=\mathcal{E}^{cin}(B)-\mathcal{E}^{cin}(A)}}}\\
......@@ -539,7 +523,7 @@ théorème...
#### Quel lien entre force conservative et énergie potentielle ?
x* La **circulation de la force totale** s'exerçant sur un corpuscule e masse constante,
x* La **circulation de la force conservative** s'exerçant sur un corpuscule de masse constante,
évaluée sur une portion de *trajectoire d'extrémités $`A`$ et $`B`$* s'écrit :
<br>
$`\begin{align}
......@@ -553,6 +537,45 @@ $ =-\,\int_A^B \mathcal{E}_X^{pot} \\
& \color{blue}{\large{\mathbf{\;=\overset{B}{\underset{A}{\Large{\Delta}}}(\mathcal{E}_X^{pot})}}}\\
\end{align}`$
<br>
<br>
$`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
\end{align}`$
<br>
<br>
$`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
& =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\
\end{align}`$
<br>
<br>
$`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
& =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\
$ =-\,\int_A^B \alpha\,d\phi_X \\
<br>
<br>
$`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
& =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\
$ =-\,\int_A^B \alpha\,d\phi_X \\
$ =-\,\int_A^B \mathcal{E}_X^{pot} \\
\\
& \color{brown}{\large{\mathbf{\;=-\,\mathcal{E}_X^{pot}(B)-\mathcal{E}_X^{pot}(A)}}}\\
\end{align}`$
<br>
<br>
$`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_{tot}\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
& =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\
$ =-\,\int_A^B \alpha\,d\phi_X \\
$ =-\,\int_A^B \mathcal{E}_X^{pot} \\
\\
& \color{brown}{\large{\mathbf{\;=-\,\mathcal{E}_X^{pot}(B)-\mathcal{E}_X^{pot}(A)}}}\\
\\
& \color{blue}{\large{\mathbf{\;=\overset{B}{\underset{A}{\Large{\Delta}}}(\mathcal{E}_X^{pot})}}}\\
\end{align}`$
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment