Commit 22031be3 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 03c147f8
Pipeline #15966 canceled with stage
...@@ -1589,7 +1589,7 @@ $`\quad\quad \;\; = \cdots`$ ...@@ -1589,7 +1589,7 @@ $`\quad\quad \;\; = \cdots`$
* Nous obtenons l'**expression finale** de l'onde résultante de la *superposition de deux OPPH* quelconques : * Nous obtenons l'**expression finale** de l'onde résultante de la *superposition de deux OPPH* quelconques :
<br> <br>
**$`U(\overrightarrow{r},t)`$** **$`\mathbf{U(\overrightarrow{r},t)}`$**
<br> <br>
*$`\begin{array}\quad = &A_1\,cos\big(\underbrace{\omega_1 t + \overrightarrow{k}_1\cdot\overrightarrow{r}+\varphi_1}_{\color{blue}{\theta_1(\vec{r},t)}}\big)\\ *$`\begin{array}\quad = &A_1\,cos\big(\underbrace{\omega_1 t + \overrightarrow{k}_1\cdot\overrightarrow{r}+\varphi_1}_{\color{blue}{\theta_1(\vec{r},t)}}\big)\\
&+ \;A_2\,cos\big(\underbrace{\omega_2 t + \overrightarrow{k}_2\cdot\overrightarrow{r}+\varphi_2}_{\color{blue}{\theta_2(\vec{r},t)}}\big) &+ \;A_2\,cos\big(\underbrace{\omega_2 t + \overrightarrow{k}_2\cdot\overrightarrow{r}+\varphi_2}_{\color{blue}{\theta_2(\vec{r},t)}}\big)
...@@ -1598,11 +1598,11 @@ $`\quad\quad \;\; = \cdots`$ ...@@ -1598,11 +1598,11 @@ $`\quad\quad \;\; = \cdots`$
$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\,\theta_{moy}\;cos\,\Delta\theta_{12}\\ $`\begin{array}\quad = &+\,2\,A_{moy}\,cos\,\theta_{moy}\;cos\,\Delta\theta_{12}\\
&-\,2\,\Delta A_{1-2}\,\,sin\,\theta_{moy}\;sin\,\Delta\theta_{12}\end{array}`$ &-\,2\,\Delta A_{1-2}\,\,sin\,\theta_{moy}\;sin\,\Delta\theta_{12}\end{array}`$
<br> <br>
**$`\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\ **$`\mathbf{\boldsymbol{\begin{array}\quad = &+\,2\,A_{moy}\,cos\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,cos\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)\\ &\quad\times\,cos\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)\\
&-\,2\,\Delta A_{1-2}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\ &-\,2\,\Delta A_{1-2}\,sin\big(\omega_{moy} t + \overrightarrow{k}_{moy}\cdot\overrightarrow{r}+ \varphi_{moy}\big)\\
&\quad\times\,sin\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big) &\quad\times\,sin\big(\Delta \omega_{12} t + \Delta \overrightarrow{k}_{12}\cdot\overrightarrow{r}+\Delta\varphi_{12}\big)
\end{array}`$** \end{array}}}`$**
<br> <br>
...@@ -1646,28 +1646,41 @@ $`\quad\quad \;\; = \cdots`$ ...@@ -1646,28 +1646,41 @@ $`\quad\quad \;\; = \cdots`$
@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@
* *Travaillons* les **termes $`(exp\,i\theta_1\,+\,exp\,i\theta_2)`$ et $`(exp\,i\theta_1\,-\,exp\,i\theta_2)`$** qui interviennent * *Travaillons* les **termes $`exp\,i\theta_1\,+\,exp\,i\theta_2\;`$ et $`\;exp\,i\theta_1\,-\,exp\,i\theta_2`$** qui interviennent
dans l'expression de $`\underline{U}(\vec{r},t)`$ : dans l'expression de $`\underline{U}(\vec{r},t)`$ :
<br> <br>
**$`exp\,i\theta_1\,+\,exp\,i\theta_2`$** **$`exp\,i\theta_1\,+\,exp\,i\theta_2`$**
$`\quad\;\; =\;exp^{\,i\,(\theta_{moy}+\Delta\theta_{12})}\,+\,exp^{\,i\,(\theta_{moy}-\Delta\theta_{12})}`$
<br> <br>
$`\color{blue}{\scriptsize{exp\,(a+b)\,=\, exp\,a\;+\; exp\,b}}`$ $`\quad\;\; =\;e^{\,i\,(\theta_{moy}+\Delta\theta_{12})}\,+\,e^{\,i\,(\theta_{moy}-\Delta\theta_{12})}`$
<br> <br>
**$`\quad\;\; = 2\,cos\,\theta_{moy}\;cos\,\Delta\theta_{12}`$** $`\quad\;\; \color{blue}{\scriptsize{exp\,(a+b)\,=\, exp\,a\,+\, exp\,b}}`$
<br>
$`\quad\;\; = e^{\,i\,\theta_{moy}}\,e^{\,i\,\theta_{12}}\,+\,e^{\,i\,\theta_{moy}}\,e^{-\,i\,\theta_{12}}
<br>
$`\quad\;\; = e^{\,i\,\theta_{moy}}\,\big(e^{\,i\,\theta_{12}}\,+\,e^{-\,i\,\theta_{12}}\big)`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &exp\,ia\,=\, cos\,a\,+\,i\, sin\,a\\
&exp\,- ia\,=\, cos\,a\,-\,i\, sin\,a\end{align}
\right\}\Longrightarrow\\
\quad\quad exp\,ia\,+\,exp\,-ia\,=\,2\,cos\,a}}`$
<br>
**$`\quad\;\; = 2\,cos(\theta_{12})\, e^{\,i\,\theta_{moy}}`$**
<br> <br>
de même de même
<br> <br>
**$`cos\theta_1-cos\theta_2`$** **$`exp\,i\theta_1\,-\,exp\,i\theta_2`$**
$`\quad\;\; = \;cos(\theta_{moy}+\Delta\theta_{12})-cos(\theta_{moy}-\Delta\theta_{12})`$
<br> <br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\ $`\quad\;\; =\;e^{\,i\,(\theta_{moy}+\Delta\theta_{12})}\,-\,e^{\,i\,(\theta_{moy}-\Delta\theta_{12})}`$
&cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align} <br>
$`\quad\;\; = e^{\,i\,\theta_{moy}}\,\big(e^{\,i\,\theta_{12}}\,-\,e^{-\,i\,\theta_{12}}\big)`$
<br>
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &exp\,ia\,=\, cos\,a\,+\,i\, sin\,a\\
&exp\,- ia\,=\, cos\,a\,-\,i\, sin\,a\end{align}
\right\}\Longrightarrow\\ \right\}\Longrightarrow\\
\quad\quad cos(a+b)\,-\,cos(a-b)\,=\,-\,2\,sin(a)\,sin(b)}}`$ \quad\quad exp\,ia\,-\,exp\,-ia\,=\,-2i\,cos\,a}}`$
<br>
**$`\quad\;\; = -2i\,sin(\theta_{12})\, e^{\,i\,\theta_{moy}}`$**
<br> <br>
**$`\quad\;\; = -\,2\,sin\,\theta_{moy}\;sin\,\Delta\theta_{12}`$**
* Nous obtenons l'**expression finale** de l'onde résultante de la *superposition de deux OPPH* quelconques : * Nous obtenons l'**expression finale** de l'onde résultante de la *superposition de deux OPPH* quelconques :
<br> <br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment