Commit 22cd51d1 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 93a8d5bc
Pipeline #15179 canceled with stage
...@@ -223,22 +223,30 @@ RÉSUMÉ ...@@ -223,22 +223,30 @@ RÉSUMÉ
&=\dots\end{align}`$** &=\dots\end{align}`$**
* en *coordonnées sphériques $`(r,\theta,\varphi)`$* * en *coordonnées sphériques $`(r,\theta,\varphi)`$*
<br> <br>
*$`\overrightarrow{e_r}(t)=+\sin\theta(t)\cos\varphi(t),\overrightarrow{e_x}+\sin\theta(t)\sin\varphi(t),\overrightarrow{e_y}+\cos\theta(t)\,\overrightarrow{e_z}`$* *$`\overrightarrow{e_r}(t)=+\sin\theta(t)\cos\varphi(t)\,\overrightarrow{e_x}`$*
*$`\overrightarrow{e_{\theta}}(t)=+\cos\theta(t)\cos\varphi(t),\overrightarrow{e_x}+\cos\theta(t)\sin\varphi(t),\overrightarrow{e_y}-\sin\theta(t)\,\overrightarrow{e_z}`$* *$`\;+\,\sin\theta(t)\sin\varphi(t),\overrightarrow{e_y}`$*
*$`\overrightarrow{e_{\varphi}}(t)=-\sin\varphi(t)\,\overrightarrow{e_x}+\cos\varphi(t)\,\overrightarrow{e_y}+0\,\overrightarrow{e_z}`$* *$`\;+\,\cos\theta(t)\,\overrightarrow{e_z}`$*
<br>
*$`\overrightarrow{e_{\theta}}(t)=+\cos\theta(t)\cos\varphi(t)\,\overrightarrow{e_x}`$*
*$`\;+\,\cos\theta(t)\sin\varphi(t),\overrightarrow{e_y}`$*
*$`\;-\,\sin\theta(t)\,\overrightarrow{e_z}`$*
<br>
*$`\overrightarrow{e_{\varphi}}(t)=-\sin\varphi(t)\,\overrightarrow{e_x}`$*
*\;+\,\cos\varphi(t)\,\overrightarrow{e_y}+0\,\overrightarrow{e_z}`$*
<br> <br>
ce qui entraîne ce qui entraîne
<br> <br>
**$`\begin{align} **$`\dfrac{d\overrightarrow{e_r}}{dt}=\dfrac{d\big[\sin\theta\,\cos\varphi\big])}{dt}\,\overrightarrow{e_x}`$**
\dfrac{d\overrightarrow{e_r}}{dt}&=\dfrac{d\big[\sin\theta\,\cos\varphi\big])}{dt}\,\overrightarrow{e_x}+\dfrac{d\big[\sin\theta\,\sin\varphi\big]}{dt}\,\overrightarrow{e_y}+\dfrac{d(\cos\theta)}{dt}\,\overrightarrow{e_z}\\ **\;+\,\dfrac{d\big[\sin\theta\,\sin\varphi\big]}{dt}\,\overrightarrow{e_y}`$**
&=\dots\end{align}`$** **\;+\,\dfrac{d(\cos\theta)}{dt}\,\overrightarrow{e_z}**
**$`\begin{align} <br>
\dfrac{d\overrightarrow{e_r}}{dt}&=\dfrac{d\big[\cos\theta\,\cos\varphi\big])}{dt}\,\overrightarrow{e_x}+\dfrac{d\big[\cos\theta\,\sin\varphi\big]}{dt}\,\overrightarrow{e_y}+\dfrac{d(-\sin\theta)}{dt}\,\overrightarrow{e_z}\\ **$`\dfrac{d\overrightarrow{e_r}}{dt}&=\dfrac{d\big[\cos\theta\,\cos\varphi\big])}{dt}\,\overrightarrow{e_x}`$**
&=\dots\end{align}`$** **$`\;+\,\dfrac{d\big[\cos\theta\,\sin\varphi\big]}{dt}\,\overrightarrow{e_y}`$**
**$`\begin{align} **$`\;+\,\dfrac{d(-\sin\theta)}{dt}\,\overrightarrow{e_z}`$**
\dfrac{d\overrightarrow{e_r}}{dt}&=\dfrac{d(-\sin\varphi)}{dt}\,\overrightarrow{e_x}+\dfrac{d(\cos\varphi)}{dt}\,\overrightarrow{e_y}+0\,\overrightarrow{e_z}\\ <br>
&=\dots\end{align}`$** **$`\dfrac{d\overrightarrow{e_r}}{dt}&=\dfrac{d(-\sin\varphi)}{dt}\,\overrightarrow{e_x}`$**
**$`\;+\,\dfrac{d(\cos\varphi)}{dt}\,\overrightarrow{e_y}`$**
**$`\;+\,0\,\overrightarrow{e_z}`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment