Commit 246bd55a authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 2f4a2c57
Pipeline #6376 canceled with stage
......@@ -356,19 +356,14 @@ $`fem = \mathcal{C}_E = \mathcal{E}
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
Stokes' theorem =
Stokes' theorem , for all vectorial field $`\vec{X}`$ :
for all vectorial field $`\vec{X}`$,
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle
$`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle
\oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
$`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}=
$`\displaystyle\oint_{\Gamma}\overrightarrow{H} \cdot \overrightarrow{dl}=
\underset{S\leftrightarrow\Gamma}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$
$`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment