Commit 24bffbf0 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 248a697c
Pipeline #18235 canceled with stage
......@@ -784,14 +784,16 @@ figure à faire
\times
\int_{\rho=0}^{R} \rho\,(\rho^2+z_M^2)^{\,-3/2}\,d\rho`$
<br>
$`\displaystyle \hspace{1cm} = \dfrac{\dens^{2D}\,z}{2\epsilon_0} \int_{\rho = 0}^R
-\Big(\underbrace{-\dfrac{1}{2}\Big}_{n+1}\cdot
$`\displaystyle \hspace{1cm} =
\dfrac{\dens^{2D}\,z}{2\epsilon_0}
\int_{\rho = 0}^R
- \Big(\underbrace{-\dfrac{1}{2}_{n+1}\Big)}\cdot
\underbrace{2\rho}_{u^{\,'}}\,\underbrace{(\rho^2+z^2)^{-\,3/2}}_{u^n}\,d\rho`$
<br>
$`\displaystyle \hspace{1cm} = - \dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_0^R`$
<br>
$`\color{blue}{\scriptsize{\text{le signe moins devant } (n+1)\cdot u^n \cdot u'}}`$
$`\color{blue}{\scriptsize{\text{ devient plus en inversant les bornes d'intégration}}}`$
$`\color{blue}{\scriptsize{\text{Le signe moins devient plus}`$
$`\color{blue}{\scriptsize{\text{en inversant les bornes d'intégration}}}`$
<br>
$`\displaystyle \hspace{1cm} = +\dfrac{\dens^{2D}\,z}{2\epsilon_0} \big[(\rho^2+z^2)^{-\,1/2}\big]_R^0`$
<br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment