Commit 2986aac8 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 6dd43a47
Pipeline #18815 canceled with stage
...@@ -470,11 +470,11 @@ matériel à la vitesse $`\mathscr{v}_{prop}`$, tu as une deuxième relation : ...@@ -470,11 +470,11 @@ matériel à la vitesse $`\mathscr{v}_{prop}`$, tu as une deuxième relation :
<br> <br>
* **$`\mathbf{d_{impuls.2}}`$** est donc la distance **$`\mathbf{d_{impuls.1}}`$** à laquelle *il faut* : * **$`\mathbf{d_{impuls.2}}`$** est donc la distance **$`\mathbf{d_{impuls.1}}`$** à laquelle *il faut* :
* *ajouter la distance algébrique $`\mathbf{d_{source}}`$* parcourue par la source pendant * *ajouter la distance $`\mathbf{d_{source}}`$* parcourue par la source pendant
la durée séparant l'émission des deux impulsions : la durée séparant l'émission des deux impulsions :
*$`\mathbf{d_{source}=\mathscr{v}_{source}\times (t_2 - t_1)}`$*. *$`\mathbf{d_{source}=\mathscr{v}_{source}\times (t_2 - t_1)}`$*.
<br> <br>
* *ajouter la distance algébrique $`\mathbf{d_{capteur}}`$* parcourue par le capteur * *ajouter la distance $`\mathbf{d_{capteur}}`$* parcourue par le capteur
pendant la durée séparant la réception deux impulsions : pendant la durée séparant la réception deux impulsions :
*$`\mathbf{d_{capteur} = \mathscr{v}_{capteur}\times (t_2' - t_1')}`$*. *$`\mathbf{d_{capteur} = \mathscr{v}_{capteur}\times (t_2' - t_1')}`$*.
<br> <br>
...@@ -537,6 +537,28 @@ $`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag ...@@ -537,6 +537,28 @@ $`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag
![](doppler-2-n2_L1200.png) ![](doppler-2-n2_L1200.png)
<br>
* **$`\mathbf{d_{impuls.2}}`$** est donc la distance **$`\mathbf{d_{impuls.1}}`$** à laquelle *il faut* :
* *soustraire la distance $`\mathbf{d_{source}}`$* parcourue par la source pendant
la durée séparant l'émission des deux impulsions :
*$`\mathbf{d_{source}=\mathscr{v}_{source}\times (t_2 - t_1)}`$*.
<br>
* *soustraire la distance $`\mathbf{d_{capteur}}`$* parcourue par le capteur
pendant la durée séparant la réception deux impulsions :
*$`\mathbf{d_{capteur} = \mathscr{v}_{capteur}\times (t_2' - t_1')}`$*.
<br>
* Tu obtiens ainsi :
<br>
**$`\mathbf{d_{impuls.2} = d_{impuls.1}}`$** *$`\mathbf{\, - d_{source} - d_{capteur}}`$*
<br>
* Un **calcul** *analogue au précédent* te conduit à :
<br>
$`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag.}- \mathscr{v}_{source}}
{\mathscr{v}_{propag.} + \mathscr{v}_{capteur}}}}`$
<br> <br>
----------------- -----------------
...@@ -545,6 +567,26 @@ $`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag ...@@ -545,6 +567,26 @@ $`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag
de propagation* de l'onde qui les relie de propagation* de l'onde qui les relie
![](doppler-3-n2_L1200.png) ![](doppler-3-n2_L1200.png)
<br>
* **$`\mathbf{d_{impuls.2}}`$** est donc la distance **$`\mathbf{d_{impuls.1}}`$** à laquelle *il faut* :
* *soustraire la distance $`\mathbf{d_{source}}`$* parcourue par la source pendant
la durée séparant l'émission des deux impulsions :
*$`\mathbf{d_{source}=\mathscr{v}_{source}\times (t_2 - t_1)}`$*.
<br>
* *ajouter la distance $`\mathbf{d_{capteur}}`$* parcourue par le capteur
pendant la durée séparant la réception deux impulsions :
*$`\mathbf{d_{capteur} = \mathscr{v}_{capteur}\times (t_2' - t_1')}`$*.
<br>
* Tu obtiens ainsi :
<br>
**$`\mathbf{d_{impuls.2} = d_{impuls.1}}`$** *$`\mathbf{\, - d_{source} + d_{capteur}}`$*
<br>
* Un **calcul** *analogue au précédent* te conduit à :
<br>
$`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag.}- \mathscr{v}_{source}}
{\mathscr{v}_{propag.} - \mathscr{v}_{capteur}}}}`$
<br> <br>
...@@ -554,6 +596,26 @@ $`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag ...@@ -554,6 +596,26 @@ $`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag
contraire à la propagation* de l'onde qui les relie contraire à la propagation* de l'onde qui les relie
![](doppler-4-n2_L1200.png) ![](doppler-4-n2_L1200.png)
<br>
* **$`\mathbf{d_{impuls.2}}`$** est donc la distance **$`\mathbf{d_{impuls.1}}`$** à laquelle *il faut* :
* *ajouter la distance $`\mathbf{d_{source}}`$* parcourue par la source pendant
la durée séparant l'émission des deux impulsions :
*$`\mathbf{d_{source}=\mathscr{v}_{source}\times (t_2 - t_1)}`$*.
<br>
* *soustraire la distance $`\mathbf{d_{capteur}}`$* parcourue par le capteur
pendant la durée séparant la réception deux impulsions :
*$`\mathbf{d_{capteur} = \mathscr{v}_{capteur}\times (t_2' - t_1')}`$*.
<br>
* Tu obtiens ainsi :
<br>
**$`\mathbf{d_{impuls.2} = d_{impuls.1}}`$** *$`\mathbf{\, + d_{source} - d_{capteur}}`$*
<br>
* Un **calcul** *analogue au précédent* te conduit à :
<br>
$`\boldsymbol{\mathbf{(t_2' - t_1')= (t_2 - t_1)\cdot \dfrac{\mathscr{v}_{propag.} + \mathscr{v}_{source}}
{\mathscr{v}_{propag.} + \mathscr{v}_{capteur}}}}`$
<br> <br>
...@@ -678,13 +740,17 @@ $`\underbrace{\big(T_{capteur}\big)^{-1}}_{ ...@@ -678,13 +740,17 @@ $`\underbrace{\big(T_{capteur}\big)^{-1}}_{
-v_{capteur}}{v_{propag.} - v_{source}}}}}`$** -v_{capteur}}{v_{propag.} - v_{source}}}}}`$**
------------> ------------>
##### Quand observe-t-on cet effet Doppler ? ##### Quand observe-t-on cet effet Doppler classique ?
à faire à faire
<br> <br>
#### L'effet Doppler des ondes électromagnétiques --------------------
<br>
#### L'effet Doppler relativiste des ondes électromagnétiques
à faire. à faire.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment