Commit 2e40f313 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 984d0b64
Pipeline #10434 canceled with stage
......@@ -125,8 +125,7 @@ $`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,
à vérifier et terminer
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,
\left[\cos(a)\cos^2(\alpha)\cos(\theta)
$`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos^2(\alpha)\cos(\theta)
\,-\,\cancel{\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)}
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)
......@@ -136,7 +135,16 @@ $`u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]`$
$`\begin{multline}
u_1\,v^1\,+\, u_2\,v^2\,= u\,v\,\dfrac{1}{\cos(a)} \,\left[\cos(a)\cos^2(\alpha)\cos(\theta)\\
\,-\,\cancel{\cos(a)\cos(\alpha)\sin(\theta)\,\sin(\alpha)}\\
\,-\,\sin(a)\sin(\alpha)\sin(\theta)\,\cos(\alpha)\\
\,-\,\sin(a)\sin^2(\alpha)\,\cos(\theta)\\
\,+\,\xcancel{\sin(a)\,\cos^2(\alpha)\,\sin(\theta)}\\
\,+\,\sin(a)\,\cos(\alpha)\,\sin(\alpha)\,\cos(\theta)\\
\,+\,\cancel{\cos(a)\,\sin(\alpha)\,\cos(\alpha)\,\sin(\theta)}\\
\,+\,\cos(a)\,\sin^2(\alpha)\,\cos(\theta)\right]\\
\end{multline}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment