!!!! Publié mais invisible : n'apparait pas dans l'arborescence du site m3p2.com. Ce cours est *en construction*, il n'est *pas validé par l'équipe pédagogique* à ce stade. <br>
!!!! Document de travail destiné uniquement aux équipes pédagogiques.
<!--MétaDonnée : INS 1°année -->
<!-- Partie principale $`\longleftarrow`$ Coordonnées cylindriques N3 -->
\- Tout point $`M `$ de l'espace est projeté orthogonalement sur le plan $`xOy`$ conduisant au point $`m_{xy}`$,
et sur l'axe $`Oz`$ conduisant au point $`m_z`$.
\- La **coordonnée $`\rho_M`$** du point $`M`$ est la *distance non algébrique $`Om_{xy}`$* entre le point $`O`$ et le point $`m_{xy}`$.<br>
\- La **coordonnée $`\varphi_M`$** du point $`M`$ est l'*angle non algébrique $`\widehat{xOm_{xy}}`$* entre l'axe $`Ox`$ et la demi-droite $`Om_{xy}`$,
le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *trièdre direct*.<br>
\- La **coordonnée $`z_M`$** du point $`M`$ est la *distance algébrique $`\overline{Om_z}`$* entre le point $`O`$ et le point $`m_z`$.
! *Remarque :* Les deux premières coordonnées cylindriques d'un point $`M`$ sont les coordonnées polaires du point $`m_{xy}`$ dans le plan $`xOy`$ (plan $`z=0`$). Ce sont aussi les coordonnées polaires du point $`M`$ dans le plan $`z=z_M`$.
\- Les coordonnées **$`\rho`$ **et **$`z`$** sont des *longueurs*, dont l'*unité S.I.* est le mètre, de symbole *$`m`$*.<br>
\- La coordonnée **$`\varphi`$** est un angle, dont l'*unité S.I.* est le radian, de symbole *$`rad`$*.
\- Tout point $`M`$ de l'espace, excepté le point origine $`O`$, est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cylindriques.<br>
\- Au point origine $`O`$ est attribué les coordonnées cylindriques $`(0 , 0 , 0)`$.
\- Escribimos / on écrit / we write : $`M(\rho_M,\varphi_M,z_M)`$
\- Si el punto es cualquier punto, simplificamos / Si le point est un point quelconque, on simplifie / If the point is any point, we simplify :
\-**Tout l'espace** est couvert par les coordonnées cylindriques variant indépendamment dans les domaines $`\rho\in\mathbb{R_+^{*}}=[0 ,+\infty[ `$ , $`\varphi\in[0,2\pi[`$ et $`z\in\mathbb{R}=]-\infty ,+\infty\,[ `$.
$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ base cartesiana *directa* $`\quad\Longleftrightarrow\quad (\overrightarrow{e_{\rho}},\overrightarrow{e_{\varphi}},\overrightarrow{e_z})`$ base cilíndrica asociada *directa*.
<br>$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ base cartésienne *directe* $`\quad\Longleftrightarrow\quad (\overrightarrow{e_{\rho}},\overrightarrow{e_{\varphi}},\overrightarrow{e_z})`$ base cylindrique associée *directe*.
<br>$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ *direct* Cartesian base $`\quad\Longleftrightarrow\quad (\overrightarrow{e_{\rho}},\overrightarrow{e_{\varphi}},\overrightarrow{e_z})`$ *direct* associated cylindrical base.
[ES] ? En el marco de referencia $`\mathcal{R}(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z},t)`$ del observador, es decir cuando la origen del espacio $`O`$ es fija y los tres vectores base verifican
[FR] Dans le référentiel $`\mathcal{R}(O,\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z},t)`$ de l'observateur, c'est à dire dans le référentiel où le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ est fixe, donc tel que l'origine $`O`$ est fixe et les trois vecteurs de base vérifient
[EN] In the reference frame $`\mathcal{R}(O,\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z},t)`$ of the observer, i.e.when the origin $`O`$ is fixed and the three base vectors satisfy
$`\quad\Longrightarrow\quad`$ pour une variation infinitésimale $`d\varphi`$, $`\overrightarrow{e_{\rho}}`$ et $`\overrightarrow{e_{\varphi}}`$ varient de :
[ES] En la mecánica clásica, las interacciones entre cuerpos materiales se traducen en términos de fuerza $`\vec{F}`$ y conducen a una aceleración $`\vec{a}`$ de cada cuerpo en interacción proporcional a la inversa de su masa de inercia $`m_I`$ : $`\vec{a}=\dfrac{\vec{F}}{m_I}`$ (o $`\vec{F}=m_I\;\vec{a}`$ , ver capítulo mecánico). Como el vector de aceleración es la segunda derivada temporal del vector de posición, es posible que necesitemos conocer la segunda derivada temporal de los vectores base para el estudio del movimiento.
[FR] En mécanique classique, les interactions entre les corps matériels se traduisent en terme de force $`\vec{F}`$, et conduisent à une accélération $`\vec{a}`$ de chaque corps en interaction proportionnelle à l'inverse de sa masse d'inertie $`m_I`$ : $`\vec{a}=\dfrac{\vec{F}}{m_I}`$ (ou $`\vec{F}=m_I\;\vec{a}`$ , voir chapitre mécanique). Dans l'étude du mouvement, nous aurons besoin d'étendre l'étude à la dérivée seconde des vecteurs de base. Comme le vecteur accélaration est la dérivée seconde du vecteur position, nous pourrions avoir besoin de connaître la dérivée seconde par rapport au temps des vecteurs de base pour l'étude du mouvement.
[EN] In classical mechanics, the interactions between material bodies are expressed in terms of force $`\vec{F}`$ , and lead to an acceleration of each interacting body proportional to the inverse of its mass of inertia $`m_I`$ : $`\vec{a}=\dfrac{\vec{F}}{m_I}`$ (or $`\vec{F}=m_I\;\vec{a}`$ , see mechanical chapter). As the acceleration vector is the second time derivative of the position vector, when studying the motion we might need to know the second time derivative of the base vectors.
[FR] Base cartésien de référence $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ directe $`\Longrightarrow`$ base cylindrique $`(\overrightarrow{e_{\rho}},\overrightarrow{e_{\varphi}},\overrightarrow{e_z})`$ directe $`\Longrightarrow`$ :
[FR] Base cartésien de référence $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ indirecte $`\Longrightarrow`$ base cylindrique $`(\overrightarrow{e_{\rho}},\overrightarrow{e_{\varphi}},\overrightarrow{e_z})`$ indirecte $`\Longrightarrow`$ :<br>