Commit 2f4a2c57 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent 3adeab8c
Pipeline #6375 canceled with stage
...@@ -329,12 +329,12 @@ $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrighta ...@@ -329,12 +329,12 @@ $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrighta
[EN] (auto-trad) Stokes' theorem : for all vectorial field $`\vec{X}`$ :<br> [EN] (auto-trad) Stokes' theorem : for all vectorial field $`\vec{X}`$ :<br>
[FR] (CME), [ES] (...)?, [EN] (...)? <br> [FR] (CME), [ES] (...)?, [EN] (...)? <br>
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS $`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ = \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
[FR] (CME), [ES] (...)?, [EN] (...)? <br> [FR] (CME), [ES] (...)?, [EN] (...)? <br>
$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} $`\displaystyle\iint_{S} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS}
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} = \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= fem = \mathcal{C}_E`$ = fem = \mathcal{C}_E`$
[ES] (auto-trad) : circulación del campo eléctrico = fuerza electromotriz = voltaje inducido :<br> [ES] (auto-trad) : circulación del campo eléctrico = fuerza electromotriz = voltaje inducido :<br>
...@@ -344,7 +344,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot ...@@ -344,7 +344,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot
[FR] (CME), [ES] (...)?, [EN] (...)? <br> [FR] (CME), [ES] (...)?, [EN] (...)? <br>
$`fem = \mathcal{C}_E = \mathcal{E} $`fem = \mathcal{C}_E = \mathcal{E}
= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} = \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right) = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)
= - \dfrac{\partial \Phi_B}{\partial t}`$ = - \dfrac{\partial \Phi_B}{\partial t}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment