Commit 35203ed4 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 0c848c41
Pipeline #15789 canceled with stage
...@@ -870,23 +870,21 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va ...@@ -870,23 +870,21 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va
$`\cdot\big(\,e^{\,i\varphi_1}\,+\,e^{\,i\varphi_1}\big)`$ $`\cdot\big(\,e^{\,i\varphi_1}\,+\,e^{\,i\varphi_1}\big)`$
<br> <br>
$`\quad =A\;e^{\,i\;(\omega t\,-\, kx)}`$ $`\quad =A\;e^{\,i\;(\omega t\,-\, kx)}`$
$`\cdot\left(\,e^{\,i\left(\frac{\varphi1 + \varphi2}{2}\;+\;\frac{\varphi1-\varphi2}{2}\right) $`\cdot\left(\,e^{\,i\left(\frac{\varphi1 + \varphi2}{2}\;+\;\frac{\varphi1-\varphi2}{2}\right)}`$
}`$ $`\,+\,e^{\,i\;\left(\frac{\varphi1 + \varphi2}{2}\;-\;\frac{\varphi1-\varphi2}{2}\right)}\right)`$
$`\,+\,
e^{\,i\;\left(\frac{\varphi1 + \varphi2}{2}\;-\;\frac{\varphi1-\varphi2}{2}\right)}\right)`$
<br> <br>
$`\color{blue}{\scriptsize{\quad \text{utilisons } exp\,(a+b)\;=\; exp\,(a)\;+\; exp\,(b)}}`$ $`\color{blue}{\scriptsize{\quad \text{utilisons } exp\,(a+b)\;=\; exp\,(a)\;+\; exp\,(b)}}`$
$`\color{blue}{\scriptsize{\quad\text{et regroupons encore les termes communs.}}}`$ $`\color{blue}{\scriptsize{\quad\text{et regroupons encore les termes communs.}}}`$
<br> <br>
$`\quad = A\;e^{\,i\;(\omega t\,-\, kx)}\,e^{\,i\left(\frac{\varphi1 + \varphi2}{2}\right)}`$ $`\quad = A\;e^{\,i\,(\omega t\,-\, kx)}\,e^{\,i\,\left(\frac{\varphi1 + \varphi2}{2}\right)}`$
$`\cdot\big(\,e^{\,i\left(\frac{\varphi1-\varphi2}{2}\right)}\,+\,e^{\,-\,,i\;\left(\frac{\varphi1-\varphi2}{2}\right)}\big)`$ $`\cdot\left(\,e^{\,i\left(\frac{\varphi1-\varphi2}{2}\right)}\,+\,e^{\,-\,i\;\left(\frac{\varphi1-\varphi2}{2}\right)}\right)`$
<br> <br>
$`\color{blue}{\scriptsize{\quad \text{utilisons } exp\,(i\,a)\,+\,exp\,(-\,i\,a)\;=\;2\,cos\,a}`$ $`\color{blue}{\scriptsize{\quad \text{utilisons } exp\,(i\,a)\,+\,exp\,(-\,i\,a)\;=\;2\,cos\,a}}`$
<br> <br>
$`\quad = A\;e^{\,i\;(\omega t\,-\, kx)}\,e^{\,i\left(\frac{\varphi1 + \varphi2}{2}\right)}`$ $`\quad = A\;e^{\,i\;(\omega t\,-\, kx)}\,e^{\,i\left(\frac{\varphi1 + \varphi2}{2}\right)}`$
$`\cdot cos\left(\dfrac{\varphi1-\varphi2}{2}\right)`$ $`\cdot cos\left(\frac{\varphi1-\varphi2}{2}\right)`$
<br> <br>
$`\quad = A\;cos\left(\dfrac{\varphi1-\varphi2}{2}\right)\;e^{\,i\;(\omega t\,-\, kx\,+\,\left(\frac{\varphi1 + \varphi2}{2}\right)}`$ $`\quad = A\;cos\left(\frac{\varphi1-\varphi2}{2}\right)\;e^{\,i\,\left(\omega t\,-\, kx\,+\,\frac{\varphi1 + \varphi2}{2}\right)}`$
<br> <br>
L'onde réelle est donc : L'onde réelle est donc :
<br> <br>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment