Commit 3e4bcaca authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a65f5133
Pipeline #13549 canceled with stage
......@@ -157,11 +157,13 @@ $`\quad = \left(\begin{array}{l}
-\dfrac{\partial^2 E_z}{\partial y\,\partial z} \\
\end{array}\right)`$
* Nous remarquons alors que toutes les dérivées partielles du second ordre correspondant à
* L'ordre de dérivation n'important pas,
(exemple : $`\dfrac{\partial^2}{\partial x\,\partial y}=\dfrac{\partial^2}{\partial y\,\partial x}),
nous remarquons alors que toutes les dérivées partielles du second ordre correspondant à
des termes croisés de coordonnées s'annulent :
$`\require{cancel}\quad = \left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\cancel{\dfrac{\partial^2 U_y}{\partial x\, \partial y}}+\dfrac{\partial^2 U_z}{\partial x \,\partial z}\\
\dfrac{\partial^2 U_x}{\partial x^2}+\color{blue}{\cancel{\dfrac{\partial^2 U_y}{\partial x\, \partial y}}}+\color{blue}{\cancel{\dfrac{\partial^2 U_z}{\partial x \,\partial z}}}\\
\quad\quad - \dfrac{\partial^2 E_y}{\partial y\,\partial x}
+\dfrac{\partial^2 E_x}{\partial y^2}
+\dfrac{\partial^2 E_x}{\partial z^2}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment