Commit 3ea96ac8 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 50b14e95
Pipeline #15569 canceled with stage
...@@ -62,7 +62,13 @@ $`U(x,t) =A\;\big[cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega ...@@ -62,7 +62,13 @@ $`U(x,t) =A\;\big[cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega
$`\begin{align} U(&x,t) = U_1(x,t) + U_2(x,t) \\ $`\begin{align} U(&x,t) = U_1(x,t) + U_2(x,t) \\
&\\ &\\
&=A\;\big[cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big] &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
&\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_1)}{2} + \dfrac{\varphi_2-\varphi_2)}{2}\Big)
+ \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2)}{2} + \dfrac{\varphi_1-\varphi_1)}{2}\Big)\,\Big]\\
&\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_2)}{2} + \dfrac{\varphi_1-\varphi_2)}{2}\Big)
+ \,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_2)}{2} - \dfrac{\varphi_1-\varphi_2)}{2}\Big)\,\Big]
\end{align}`$ \end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment