!!!! Publié mais invisible : n'apparait pas dans l'arborescence du site m3p2.com. Ce cours est *en construction*, il n'est *pas validé par l'équipe pédagogique* à ce stade. <br>
!!!! Document de travail destiné uniquement aux équipes pédagogiques.
! *Thème* :<br>
! *Electrostatique / Démonstration du théorème de Gauss, forme intégrale et forme locale*<br>
!
! (_précède le thème : Electrostatique : Application du théorème de Gauss, forme intégrale et forme locale._)
<!--MétaDonnée : INS-1°année_-->
<!-- Partie principale $`\longleftarrow`$ Coordonnées cylindriques N3 -->
$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ base cartesiana *directa* $`\quad\Longleftrightarrow\quad (\overrightarrow{e_r},\overrightarrow{e_{\theta}},\overrightarrow{e_{\varphi}})`$ base esférica asociada *directa*.
<br>$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ base cartésienne *directe* $`\quad\Longleftrightarrow\quad (\overrightarrow{e_r},\overrightarrow{e_{\theta}},\overrightarrow{e_{\varphi}})`$ base sphérique associée *directe*.
<br>$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ *direct* Cartesian base $`\quad\Longleftrightarrow\quad (\overrightarrow{e_r},\overrightarrow{e_{\theta}},\overrightarrow{e_{\varphi}})`$ *direct* associated spherical base.
dans la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ :
$`\overrightarrow{e_r}(t)=
\left| \begin{array}{l}
sin\,\theta(t)\cdot cos\,\varphi(t) \\
sin\,\theta(t)\cdot sin\,\varphi(t) \\
cos\,\theta(t) \\
\end{array} \right.\quad`$ ,
$`\quad\overrightarrow{e_{\theta}}(t)=
\left|\begin{array}{l}
cos\,\theta(t)\cdot cos\,\varphi(t) \\
cos\,\theta(t)\cdot sin\,\varphi(t) \\
-\,sin\,\theta(t) \\
\end{array}\right.\quad`$ ,
$`\quad\overrightarrow{e_{\varphi}}(t)=
\left|\begin{array}{l}
-\,sin\,\varphi(t) \\
cos\,\varphi(t) \\
0 \\
\end{array}\right.`$
Dans le référentiel $`\mathcal{R}(O,\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z},t)`$ de l'observateur, c'est à dire dans le référentiel où le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$ est fixe, donc tel que l'origine $`O`$ est fixe et les trois vecteurs de base vérifient