! *Remarque :* Les deux premières coordonnées cylindriques d'un point $`M`$ sont les coordonnées polaires du point $`m_{xy}`$ dans le plan $`xOy`$ (plan $`z=0`$). Ce sont aussi les coordonnées polaires du point $`M`$ dans le plan $`z=z_M`$.
! *Remarque :* Les deux premières coordonnées cylindriques d'un point $`M`$ sont les coordonnées polaires du point $`m_{xy}`$ dans le plan $`xOy`$ (plan $`z=0`$). Ce sont aussi les coordonnées polaires du point $`M`$ dans le plan $`z=z_M`$.
\- Les coordonnées **$`\rho`$ **et **$`z`$** sont des *longueurs*, dont l'*unité S.I.* est le mètre, de symbole *$`m`$*.<br>
\- Les coordonnées **$`\rho`$ **et **$`z`$** sont des *longueurs*, dont l'*unité S.I.* est le mètre, de symbole *$`m`$*.<br>
...
@@ -58,6 +66,10 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
...
@@ -58,6 +66,10 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
\- Tout point $`M`$ de l'espace, excepté le point origine $`O`$, est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cylindriques.<br>
\- Tout point $`M`$ de l'espace, excepté le point origine $`O`$, est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cylindriques.<br>
\- Au point origine $`O`$ est attribué les coordonnées cylindriques $`(0 , 0 , 0)`$.
\- Au point origine $`O`$ est attribué les coordonnées cylindriques $`(0 , 0 , 0)`$.
...
@@ -67,11 +79,22 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
...
@@ -67,11 +79,22 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
\-**Tout l'espace** est couvert par les coordonnées cylindriques variant indépendamment dans les domaines $`\rho\in\mathbb{R_+^{*}}=[0 ,+\infty[ `$ , $`\varphi\in[0,2\pi[`$ et $`z\in\mathbb{R}=]-\infty ,+\infty\,[ `$.
------------------
**CS340*
\-**Tout l'espace** est couvert par les coordonnées cylindriques variant indépendamment
dans les domaines $`\rho\in\mathbb{R_+^{*}}=[0 ,+\infty[ `$ ,
$`\varphi\in[0,2\pi[`$ et $`z\in\mathbb{R}=]-\infty ,+\infty\,[`$.
[ES] En la mecánica clásica, las interacciones entre cuerpos materiales se traducen en términos de fuerza $`\vec{F}`$ y conducen a una aceleración $`\vec{a}`$ de cada cuerpo en interacción proporcional a la inversa de su masa de inercia $`m_I`$ : $`\vec{a}=\dfrac{\vec{F}}{m_I}`$ (o $`\vec{F}=m_I\;\vec{a}`$ , ver capítulo mecánico). Como el vector de aceleración es la segunda derivada temporal del vector de posición, es posible que necesitemos conocer la segunda derivada temporal de los vectores base para el estudio del movimiento.
[ES] En la mecánica clásica, las interacciones entre cuerpos materiales se traducen en términos de fuerza $`\vec{F}`$ y conducen a una aceleración $`\vec{a}`$ de cada cuerpo en interacción proporcional a la inversa de su masa de inercia $`m_I`$ : $`\vec{a}=\dfrac{\vec{F}}{m_I}`$ (o $`\vec{F}=m_I\;\vec{a}`$ , ver capítulo mecánico). Como el vector de aceleración es la segunda derivada temporal del vector de posición, es posible que necesitemos conocer la segunda derivada temporal de los vectores base para el estudio del movimiento.