Commit 4434d81b authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent efe83025
Pipeline #14629 canceled with stage
......@@ -73,14 +73,6 @@ RÉSUMÉ<br>
* Calculons l'effectif $`N(t_2)`$ de $`\mathscr{P}`$ à une date $`t_2`$ connaissant l'effectif $`N(t_1)`$ à une date $`t_1`$ :
<br>
$`\begin{align}
\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} =r\,N(t)&\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\
\\
&\Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r(t)\,dt
\end{align}`$
<br>
$`\displaystyle\begin{align}
\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} =r\,N(t)&\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\
......@@ -90,10 +82,17 @@ RÉSUMÉ<br>
&\Longrightarrow\quad\big[\,ln\,|N|\,\big]_{N(t_1)}^{N(t_2)}= r \,\big[\,t\,\big]_{t_1}^{t_2}
\end{align}`$
<br>
$`\displaystyle\begin{align}
\left.\dfrac{dN}{dt}\right\lvert_{\,\bigt} =r\,N(t)&\quad \Longrightarrow\quad\left.\dfrac{dN}{N}\right\lvert_{\,\bigt}=r\,dt\\
\\
&\Longrightarrow\quad\int_{N(t_1)}^{N(t_2)}\dfrac{dN}{N}=\int_{t_1}^{t_2} r\,dt\\
\\
&\Longrightarrow\quad\big[\,ln\,|N|\,\big]_{N(t_1)}^{N(t_2)}= r \,\big[\,t\,\big]_{t_1}^{t_2}\\
\\
&\Longrightarrow\quad(ln\,|\underbrace{N(t_2)}_{\begin{array}{c}N>0\\ \Rightarrow|N|=N}\end{array}}-\,ln\,|N(t_1)| = r\,(t_2 - t_1)
&\Longrightarrow\quad(ln\,|\underbrace{N(t_2)}_{
\begin{array}{c}N>0\\ \Rightarrow|N|=N\end{array}}-\,ln\,|N(t_1)| = r\,(t_2 - t_1)
\end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment