Commit 51b4d4c8 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 55388f4c
Pipeline #13736 canceled with stage
......@@ -82,31 +82,7 @@ div \overrightarrow{B} = 0\quad \small{(Maxwell-flux)}\\
\mathbf{\overrightarrow{rot} \;\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}}\quad\tiny{\text{Maxwell-Faraday}}\\
\mathbf{\overrightarrow{rot} \;\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}}\quad\tiny{\text{Maxwell-Ampère}}
\end{array}\right.`$
$`\left{\begin{array}{l}
\mathbf{div \overrightarrow{E} = \dfrac{\dens}{\epsilon_0}}\quad\tiny{Maxwell-Gauss}}\\
\end{array}\right.`$
$`\left\{\begin{array}{l}
\mathbf{div \overrightarrow{E} = \dfrac{\dens}{\epsilon_0}}\quad\tiny{Maxwell-Gauss}}\\
\mathbf{div \overrightarrow{B} = 0\quad Maxwell-flux}
\end{array}\right.`$
$`\left\{\begin{array}{l}
div \overrightarrow{E} = \dfrac{\dens}{\epsilon_0}}\quad\tiny{Maxwell-Gauss}\\
\end{array}\right.`$
$`\left\{\begin{array}{l}
div \overrightarrow{E} = \dfrac{\dens}{\epsilon_0}}\quad\tiny{Maxwell-Gauss}\\
div \overrightarrow{B} = 0}\quad Maxwell-flux}
\end{array}\right.`$
$`\left{ \begin{array}{l}
div \overrightarrow{E} = \dfrac{\dens}{\epsilon_0}\quad\tiny{Maxwell-Gauss}\\
div \overrightarrow{B} = 0\quad Maxwell-flux\\
\overrightarrow{rot} \;\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}\quad\tiny{\text{Maxwell-Faraday}\\
\overrightarrow{rot} \;\overrightarrow{B} = \mu_0\;\overrightarrow{j} + \mu_0 \epsilon_0 \;\dfrac{\partial \overrightarrow{E}}{\partial t}\quad\tiny{\text{Maxwell-Ampère}}
\end{array}\right.`$
<br>
avec $`\dens`$ densité volumique de charge
&nbsp;&nbsp; et $`\overrightarrow{j}`$ vecteur densité volumique de courant.
......@@ -123,8 +99,8 @@ div \overrightarrow{B} = 0\quad \small{(Maxwell-flux)}\\
constante fundamentale de la nature.
* $`\Longrightarrow`$ le champ EM contient de l'énergie,
en densité volumique $`\normalsize{\dens_{EM}}`$ :
$`\normalsize{\dens_{EM}=\dfrac{\epsilon_0\,\overrightarrow{E}\cdot\overrightarrow{E}}{2}+\dfrac{\overrightarrow{B}\cdot\overrightarrow{B}}{2 \mu_0}}`$
en densité volumique $`\dens_{EM}`$ :
$`\dens_{EM}=\dfrac{\epsilon_0\,\overrightarrow{E}\cdot\overrightarrow{E}}{2}+\dfrac{\overrightarrow{B}\cdot\overrightarrow{B}}{2 \mu_0}`$
* $`\Longrightarrow`$ tout $`\overrightarrow{dS}`$ reçoit la puissance EM $`\mathcal{P}_{EM}`$ :
$`\mathcal{P}_{EM}=\Pi\cdot\overrightarrow{dS}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment