Commit 52d79ca5 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent e966bbc4
Pipeline #13945 canceled with stage
......@@ -117,8 +117,9 @@ $`\overrightarrow{OM}(t)=\overrightarrow{r}(t)\quad\text{et}\quad
alors
Loi de transformation galiléenne des positions :
$`\Big\{\;\;t' = t`$
$`\left\{\begin{array}{l}
t' = t \\
x'(t)=x(t)-V_x\,t \\
y'(t)=y(t)-V_y\,t \\
z'(t)=z(t)-V_z\,t
......@@ -128,9 +129,9 @@ $`\overrightarrow{r}'=\overrightarrow{r}-\overrightarrow{V}\,t`$
Loi de transformation galiléenne des vitesses :
$`\Big\{\;\;dt' = dt`$
$`\left\{\begin{array}{l}
dt' = dt \\
\dfrac{dx'}{dt'}=\dfrac{dx}{dt}-V_x \\
\dfrac{dy'}{dt'}=\dfrac{dy}{dt}-V_y \\
\dfrac{dz'}{dt'}=\dfrac{dz}{dt}-V_z
......@@ -147,7 +148,6 @@ $`\overrightarrow{\mathscr{v}}'=\overrightarrow{\mathscr{v}}-\overrightarrow{V}`
Loi de transformation galiléenne des accélérations :
$`\left\{\begin{array}{l}
dt' = dt \\
\dfrac{d^2 x'}{dt'^2}=\dfrac{d}{dt}\big(\mathscr{v}_x-V_x\big)=\dfrac{d^2 x}{dt^2} \\
\dfrac{d^2 y'}{dt'^2}=\dfrac{d}{dt}\big(\mathscr{v}_y-V_y\big)=\dfrac{d^2 y}{dt^2} \\
\dfrac{d^2 z'}{dt'^2}=\dfrac{d}{dt}\big(\mathscr{v}_z-V_z\big)=\dfrac{d^2 z}{dt^2} \\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment