Commit 5703fd52 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 66d56f28
Pipeline #12753 canceled with stage
...@@ -146,24 +146,26 @@ $`\Longrightarrow`$ ...@@ -146,24 +146,26 @@ $`\Longrightarrow`$
À tout instant t, et pour tout volume $`\tau`$ : À tout instant t, et pour tout volume $`\tau`$ :
* $`\forall \overrightarrow{r}, \overrightarrow{rot} \;\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`$ * $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`$
$`\Longrightarrow \iiint_{\Ltau} \overrightarrow{rot} \;\overrightarrow{E}\,d\tau = \iiint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau`$ $`\Longrightarrow \iiint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau = \iiint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau`$
* $`\left.\begin{array}{l} * $`\left.\begin{array}{l}
\iiint_{\Ltau} \overrightarrow{rot} \;\overrightarrow{E}\,d\tau = \iiint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau \\ \iiint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau = \iiint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau \\
\text{Newton : espace et temps indépendants} \text{Newton : espace et temps indépendants}
\end{array}\right\} \end{array}\right\}
\Longrightarrow`$ \Longrightarrow`$
$`\iiint_{\Ltau} \overrightarrow{rot} \;\overrightarrow{E}\,d\tau = -\dfrac{\partial \overrightarrow{}}\left({\partial t}\iiint_{\Ltau}\overrightarrow{B} d\tau\right)`$ $`\iiint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau = -\dfrac{\partial \overrightarrow{}\left({\partial t}\iiint_{\Ltau}\overrightarrow{B} d\tau\right)`$
$`\left.\begin{array}{l} $`\left.\begin{array}{l}
\cdot\cdot\cdot \\ \iiint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau
\cdot\cdot\cdot = -\dfrac{\partial \overrightarrow{}\left({\partial t}\iiint_{\Ltau}\overrightarrow{B} d\tau\right) \\
\iint_{S} \;\overrightarrow{rot}\,\overrightarrow{E} \cdot dS
= \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
\end{array}\right\} \end{array}\right\}
\Longrightarrow`$ \Longrightarrow`$
**$`\mathbf{\cdot\cdot\cdot}`$** **$`\mathbf{\displaystyle\iint_{S} \;\overrightarrow{rot}\,\overrightarrow{E} \cdot dS}
= -\dfrac{\partial \overrightarrow{}{\partial t}\iiint_{\Ltau}\overrightarrow{B} d\tau}`$**
* *Maxwell-Ampère* : * *Maxwell-Ampère* :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment