Commit 5a633949 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent b27138e6
Pipeline #19486 canceled with stage
...@@ -12,19 +12,28 @@ visible: false ...@@ -12,19 +12,28 @@ visible: false
### L'opérateur divergence ### L'opérateur divergence
##### Expression de la divergence en coordonnées cartésiennes
**$`\mathbf{
div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\mathbf{=\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}`$**
##### Expression de la divergence en coordonnées cylindriques ##### Expression de la divergence en coordonnées cylindriques
**$`\mathbf{div\,\overrightarrow{X}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho} **$`\mathbf{div\,\overrightarrow{X}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}}`$**$`\boldsymbol{\mathbf{\;=\dfrac{1}{\rho}\;\dfrac{\partial\,(\,\rho\,X_{\rho})}{\partial\,\rho}
+\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$** +\dfrac{1}{\rho}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}+\dfrac{\partial\,X_{z}}{\partial\,z}}}`$**
<br>**$`\mathbf{
div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\mathbf{=\dfrac{\partial X_x}{\partial x}+\dfrac{\partial X_y}{\partial y}+\dfrac{\partial X_z}{\partial z}
}`$**
##### Expression de la divergence en coordonnées sphériques ##### Expression de la divergence en coordonnées sphériques
****$`\mathbf{\boldsymbol{\begin{align} **$`\mathbf{
div\,\overrightarrow{X}}`$**$`\mathbf{\;=\dfrac{d\Phi_X}{d\tau}}`$**$`\;\boldsymbol{\mathbf{\begin{align}
= &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
& \quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad + \dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}
\end{align}}}`$**
****$`\boldsymbol{\mathbf{\begin{align}
div\,\overrightarrow{X} = &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\ div\,\overrightarrow{X} = &\dfrac{1}{r^2}\;\dfrac{\partial\,(r^2\,X_r}{\partial\,r}\\
& \quad\quad\dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\ & \quad\quad\dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,(sin\,\theta\,X_{\theta})}{\partial\,\theta}\\
& \quad\quad\quad\quad\dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi} & \quad\quad\quad\quad\dfrac{1}{r\,sin\,\theta}\;\dfrac{\partial\,X_{\varphi}}{\partial\,\varphi}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment