Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
5cb2178a
Commit
5cb2178a
authored
Dec 11, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
db92e501
Pipeline
#14815
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
199 additions
and
665 deletions
+199
-665
textbook.fr.md
...-interfaces/10.boundary-conditions/10.main/textbook.fr.md
+199
-665
No files found.
12.temporary_ins/96.electromagnetism-in-media/20.reflexion-refraction-at-interfaces/10.boundary-conditions/10.main/textbook.fr.md
View file @
5cb2178a
...
...
@@ -231,138 +231,70 @@ conductor. For the perfect conductor, as *σ* , its penetration depth
transmission can occur, the wave is totally reflected. The incident
and reflected waves are:
*i*
**[B]{.underline}***i* = *B*0 e*i*(*kz*−*ωt*)**ˆe***y* =
>
*i* e*i*(*kz*−*ωt*)**ˆe***y*
>
(3.21)
>
medium 1 perfect dielectric
>
$`
\o
verrightarrow{E}
`$*~i~*
![]()
![]()
$`
\o
verrightarrow{E}
`$*~r~* $`
\o
verrightarrow{B}
`$*~r~*
medium 2 perfect conductor
$`
\o
verrightarrow{B}
`$*~i~* **k***~i~*
@@@@@@@@ $`
\q
uad (equ. 3.21)
`$
**k***~r~*
![]()
_Figure 3.3: Left: Normal incidence at the boundary between a perfect_
_dielectric and a perfect conductor. Right the total fields at a few_
_different times._
\", µ
and
$`
\o
verrightarrow{E}
`$*~r~* $`
\o
verrightarrow{B}
`$*~r~*
@@@@@@@@ $`
\q
uad (equ. 3.22)
`$
medium 2 perfect conductor
>

>
$`
\o
verrightarrow{j}
`$*~s~* O y **n**ˆ
>
Figure 3.3: Left: Normal incidence at the boundary between a perfect
dielec- tric and a perfect conductor. Right the total fields at a few
different times.
Using the boundary conditions at the interface (*z* = 0) we have:
and
@@@@@@@@ $`
\q
uad (equ. 3.23)
`$
0 *i*(*kz*+*ωt*) *r*
>
**[B]{.underline}***r* = *B*0 e−*i*(*kz*+*ωt*)**ˆe***y*
>
(3.22)
>
Using the boundary conditions at the interface (*z* = 0) we have:
>
*E~T~* ~1~ − *E~T~* ~1~ = 0 ⇒ $`
\o
verrightarrow{E}
`$*~T~* ~1~ = $`
\o
verrightarrow{E}
`$*~i~* + $`
\o
verrightarrow{E}
`$*~r~*
= 0 ⇒ *E*^0^ = −*E*^0^
>
(3.23)
>
as the boundary conditions are valid in any point of the surface and
at any time. We cab therefore write the reflected wave as:
>
*i* 0
>
**[B]{.underline}***r* = *B*0e−*i*(*kz*+*ωt*)**ˆe***y* = *i y*
>
(3.24)
>
@@@@@@@@ $`
\q
uad (equ. 3.24)
`$
In medium 1 we have a superposition of the incident and reflected
waves. The total wave is given by:
>
$`
\o
verrightarrow{E}
`$*~tot~* = $`
\o
verrightarrow{E}
`$*~i~* + $`
\o
verrightarrow{E}
`$*~r~* = *E*^0^ (*e^ikz^* −
*e*^−*ikz*^l *e*^−*iωt*^ = 2*iE*^0^ sin(*kz*)*e*^−*iωt*^**ˆe***~x~*
>
(3.25)
*i* *i*
@@@@@@@@ $`
\q
uad (equ. 3.26)
`$
or in real notation
f $`
\o
verrightarrow{E}
`$*~tot~* = 2*E*^0^ sin(*kz*) sin(*ωt*)**ˆe***~x~*
*tot*
@@@@@@@@@@@
*i kz*
>
*ωt ~y~*
>
This wave represents a **stationary wave**1: a wave the oscillates in
place. The nodes and antinodes of the electric field and magnetic
field are out of phase
>
1
Be careful not to confuse a stationary wave with an evanescent wave.
>
Be careful not to confuse a stationary wave with an evanescent wave.
by *π/*2. In particular the electric field has a node at the interface
(imposed by the boundary conditions) and the magnetic field as instead
an antinode at the interface. A stationary wave does not transport any
net energy. This can be readily understood as as much energy is
carried by the incident wave from right to left as the reflected one
in the opposite direction. Calculating the Poynting vector we have:
>
$`
\o
verrightarrow{S}
`$ = [$`
\o
verrightarrow{E}
`$*tot **×***]{.underline} [$`
\o
verrightarrow{B}
`$*tot*]{.underline} =
*E*0*B*0 sin(2
>
) sin(2
>
)**ˆe**
>
(3.27)
>
*tot µ*0
>
*[i i]{.underline} kz µ*~0~
>
*ωt ~z~*
>
@@@@@@@@ $`
\q
uad (equ. 3.27)
`$
which at any point *z* changes direction periodically. Its
time-averaged values is indeed *\<* $`
\o
verrightarrow{S}
`$*~tot~ \>~t~*= 0.
>
Due to the discontinuity of the magnetic field, a surface current
density must
{width="2.4469674103237096in"
height="1.3326695100612422in"}E*max* E*min*
Figure 3.4: Left: The incident, reflected and resulting wave at a
particular time. Right: The superposition of several resulting waves
at different times. See the video of the simulation on the [moodle
page.](https://moodle.insa-toulouse.fr/course/view.php?id=621)
>
be present at the interface. Using the fourth boundary condition we
get:
>
**nˆ *× ***($`
\o
verrightarrow{H}
`$~1~ − 0) = $`
\o
verrightarrow{j}
`$*~s~*
>
⇒ $`
\o
verrightarrow{j}
`$*~s~* = −*n***ˆe***~z~ **×***
>
[*B~tot~*(*z* = 0)]{.underline}**ˆe** =
>
*µ*0 *y*
>
2*E*0 cos( )**ˆe**
>
*µ c*
![]()
![]()
_Figure 3.4: Left: The incident, reflected and resulting wave at a_
_particular time. Right: The superposition of several resulting waves_
_at different times. See the video of the simulation on the_
_[moodle_page.](https://moodle.insa-toulouse.fr/course/view.php?id=621)_
_be present at the interface. Using the fourth boundary condition we get:_
0
@@@@@@@@@
##### Case 2: 2 perfect dielectrics
...
...
@@ -370,87 +302,48 @@ We are dealing now with two perfect dielectrics. For the discussion we
will consider that the materials are non-magnetic (*µ* = *µ*~0~) and
that no charges nor currents exist at the interface (*σ~s~* = 0*,*
$`
\o
verrightarrow{j}
`$*~s~* = 0). The incident ware is given by
>
f **[E]{.underline}***i* = *E*0 e*i*(*k*~1~*z*−*ωt*)**ˆe***x*
>
*E*^0^*n*
>
(3.28)
>
**[B]{.underline}***i* = *B*0 e*i*(*k*~1~*z*−*ωt*)**ˆe***y* = *i* 1
e*i*(*k*1*z*−*ωt*)**ˆe***y*
>
 
>
Figure 3.5: Left: Normal incidence at the boundary between twp perfect
dielectrics. Right the total fields in medium 1 at a few different
times showing a partial standing wave. The minimum amplitude of
$`
\o
verrightarrow{E}
`$*~tot~* is no more 0.
>
where **k**~1~ and *n*~1~ are the wavevecvtor and refractive index of
medium 1. The reflected and transmitted waves are:
>
**[E]{.underline}***r* = *E*0 e−*i*(*k*~1~*z*+*ωt*)**ˆe***x*
0
(3.29)
>
**[B]{.underline}***r* = *B*0 e−*i*(*k*~1~*z*+*ωt*)**ˆe***y* = − *Er
n*1
>
e−*i*(*k*~1~*zωt*)**ˆe***y*
@@@@@@@@ $`
\q
uad (equ. 3.28)
`$
and
![]()
![]()
_Figure 3.5: Left: Normal incidence at the boundary between twp perfect_
_dielectrics. Right the total fields in medium 1 at a few different_
_times showing a partial standing wave. The minimum amplitude of_
_$`
\o
verrightarrow{E}
`$*~tot~* is no more 0._
*r c*
>
**[E]{.underline}***t* = *E*0 e*i*(*k*~2~*z*−*ωt*)**ˆe***x*
where **k**~1~ and *n*~1~ are the wavevecvtor and refractive index of
medium 1. The reflected and transmitted waves are:
0
@@@@@@@@ $`
\q
uad (equ. 3.29)
`$
(3.30)
and
**[B]{.underline}** = *B*0 e*i*(*k*~2~*z*−*ωt*)**ˆe***y* = *Et n*2
e*i*(*k*~2~*z*−*ωt*)**ˆe***y*
@@@@@@@@ $`
\q
uad (equ. 3.30)
`$
*t t c*
>
We need now two boundary conditions to determine the reflected and
trans- mitted waves. Using the tangential boundary conditions for
$`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{H}
`$ we have:
f *E*^0^ + *E*^0^ = *E*^0^
(3.31)
*n*~1~(*Ei* − *Er* ) = *n*~2~*Et*
@@@@@@@@ $`
\q
uad (equ. 31)
`$
Solving for *E*^0^ and *E*^0^ we obtain:
>
*r t*
*E*0 = *n*1−*n*2 *E*0
*E*0 = 2*n*1 *E*0
@@@@@@@@@
We can now define the
>
*t n*~1~+*n*~2~ *i*
- Reflection coefficient *r* = *^E^*0 = [*n* −*n*]{.underline}
@@@@@@@@@@@@@
* Reflection coefficient *r* = *^E^*0 = [*n* −*n*]{.underline}
and
>
*r*0 1 2
*E n*~1~+*n*~2~
@@@@@@@@@@@@
-
the Transmission coefficient *t* = *^E^*0 = [2*n *]{.underline} .
*
the Transmission coefficient *t* = *^E^*0 = [2*n *]{.underline} .
0 *n* 1
>
*E* 1+*n*2
@@@@@@@@@
#### chap2 Reflection and transmission at oblique incidence
...
...
@@ -458,8 +351,8 @@ We now turn to the more general case of an oblique incidence at an
arbitrary angle *θ~i~*. Before that we will need a few definitions and
considerations.

Figure 3.6: Plane of incidence, *s* and *p*
polarisations.

_Figure 3.6: Plane of incidence, *s* and *p* polarisations._
##### chap5 Plane of incidence
...
...
@@ -469,13 +362,13 @@ the two materials. Let's consider a linearly polarised plane wave
making an oblique incidence at the interface between medium 1 and 2.
Two special cases arise:
-
if $`
\o
verrightarrow{E}
`$*~i~* is contained in the plane of incidence, the wave is
*
if $`
\o
verrightarrow{E}
`$*~i~* is contained in the plane of incidence, the wave is
said to be *p* (for parallel to the plane of incidence) or again
Transverse Magnetic (TM) as the magnetic field will be
perpendicular to the plane of incidence. The symbol "/I" is also
often used.
-
if $`
\o
verrightarrow{E}
`$*~i~* is perpendicular to the plane of incidence, the wave
*
if $`
\o
verrightarrow{E}
`$*~i~* is perpendicular to the plane of incidence, the wave
is said to be *s* (for the german word for perpendicular - to the
plane of incidence) or Transverse Electric (TE). The symbol "⊥" is
used in this case.
...
...
@@ -494,51 +387,45 @@ wavevectors's moduli in the same medium. We will
>
demonstrate it here. Let's consider the the general situation as of an
inci- dent, reflected and refracted wave as depicted in figure
[3.7.]
(#_bookmark64)
The three plane
[3.7.]
.
The three plane

![]()
_Figure 3.7: General case of reflection and refraction_
Figure 3.7: []{#_bookmark64 .anchor}General case of reflection and
refraction
>
monochromatic wave are:
>
**[E]{.underline}***i* = $`
\o
verrightarrow{E}
`$0*ei*(**k***~i~*·**r**−*ωt*)
>
**[E]{.underline}** = $`
\o
verrightarrow{E}
`$0*ei*(**k***r* ·**r**−*ω*^l^*t*)
**[E]{.underline}** = $`
\o
verrightarrow{E}
`$0*ei*(**k***t*·**r**−*ω*^ll^*t*)
>
@@@@@@@@@@@@@@
The boundary conditions are applied to the interface (*z* = 0) and
must be valid for **all points on the interface** and **for all
times**.
>
In *z* = 0, for the tangential component of the electric field we
have:
>
0 *ei*(**k***~i~*·**r***~s~*−*ωt*) + $`
\o
verrightarrow{E}
`$0
>
*ei*(**k***r* ·**r***s*−*ω*^l^*t*) = $`
\o
verrightarrow{E}
`$0
>
*ei*(**k***t*·**r***s*−*ω*^ll^*t*) (3.35)
>
@@@@@@@@@@@@
@@@@@@@@
@@@@@@@@ $`
\q
uad (equ. 3.35)
`$
where **r***~s~* is a vector on the interface.
i. For this condition to be valid *t* we must have *ω* = *ω*^t^ =
*ω*^tt^. As a consequence we have
\|**k***~i~*\| = \|**k***~r~*\| = *[ω]{.underline} n*~1~ (3.36)
@@@@@@@@ $`
\q
uad (equ. 3.36)
`$
\|**k***~t~*\| = *[ω]{.underline} n*~2~ (3.37)
@@@@@@@@ $`
\q
uad (equ. 3.37)
`$
ii. For this condition to be valid []{#_bookmark65 .anchor}∀**r***~s~*
we must have:
**k***~i~* · **r***~s~* = **k***~r~* · **r***~s~* = **k***~t~* ·
**r***~s~* (3.38)
>
@@@@@@@@ $`
\q
uad (equ. 3.38)
`$
Taking the first two terms we can write
(**k***~i~* − **k***~r~*) · **r***~s~* = 0*.* (3.39)
@@@@@@@@ $`
\q
uad (equ. 3.39)
`$
As **r***~s~* belongs to the interface, (**k***~i~* **k***~r~*) is
normal to it. This means that the vectors **k***~i~*, **k***~r~* and
...
...
@@ -546,21 +433,21 @@ the normal belong to the same plane, i.e. the plane of incidence.
iii. Equation [3.38](#_bookmark65) can be recast as
*x*(*k~i~*)*~x~* + *y*(*k~i~*)*~y~* = *x*(*k~r~*)*~x~* +
*y*(*k~r~*)*~y~* = *x*(*k~t~*)*~x~* + *y*(*k~t~*)*~y~* ∀*x, y* (3.40)
>
@@@@@@@@ $`
\q
uad (equ. 3.40)
`$
These relations can be satisfied only if all the *x* and *y*
components are the same. Taking the *x* components we can write
a.
(*k~i~*)*~x~* = \|*k~i~*\| sin *θ~i~*
a.
@@@@@@@@@
b.
(*k~r~*)*~x~* = \|*k~r~*\| sin *θ~r~*
b.
@@@@@@@@
c.
(*k~t~*)*~x~* = \|*k~t~*\| sin *θ~t~*
c.
@@@@@@@
From the first two relations we get *θ~i~* = *θ~r~* as \|*k~i~*\| =
\|*k~r~*\|.
>
From the first and the third we get \|*k~i~*\| sin *θ~i~* = \|*k~t~*\|
sin *θ~t~* or
...
...
@@ -568,12 +455,9 @@ sin *θ~t~* or
From the previous section we can write the incident, reflected and
transmitted waves as:
>
**[E]{.underline}***i* = $`
\o
verrightarrow{E}
`$0*ei*\[**k**~1~(*x* sin *θ*~1~+*z* cos
*θ*~1~)−*ωt*\] **[E]{.underline}***r* = $`
\o
verrightarrow{E}
`$0*ei*\[**k**~1~(*x* sin
*θ*~1~−*z* cos *θ*~1~)−*ωt*\] **[E]{.underline}***t* =
$`
\o
verrightarrow{E}
`$0*ei*\[**k**~2~(*x* sin *θ*~2~+*z* cos *θ*~2~)−*ωt*\]
>
@@@@@@@@@@
where the indices "1" and "2" indicate the first and second medium
physical quantities. We will now separate the discussion for a TE and
a TM wave. Due to the isotropic nature of the media considered here, a
...
...
@@ -583,9 +467,7 @@ Likewise for a TM incident wave.
##### chap3 TE Wave TM Wave
 
>
Figure 3.8: []{#_bookmark67 .anchor}Configuration for a TE and TM
incidence.
_Figure 3.8: Configuration for a TE and TM incidence._
__**chap5 TE Wave**__
...
...
@@ -593,37 +475,17 @@ $`\overrightarrow{E}`$ is tangential and $`\overrightarrow{B}`$ is contained in
From figure [3.8](#_bookmark67) we can write using the two tangential
boundary conditions and the relations $`
\o
verrightarrow{B}
`$ = *µH*, \|$`
\o
verrightarrow{B}
`$\| =
^[\|$`
\o
verrightarrow{E}
`$\|]{.underline}^ *n*:
>
*n*1 (*E*^0^ − *E*^0^) cos *θ*~1~ = *n*2 *E*^0^ cos *θ*~2~
>
As before, we define the reflection and transmission coefficient for a
TE ( or
s) wave as:
*E*0 *E*0
@@@@@@@@
*r*~⊥~ = *^[r]{.underline}^ , t*~⊥~ = *^[t]{.underline}^ ,* (3.42)
>
0 0
As before, we define the reflection and transmission coefficient for a
TE ( or
*i* *i*
@@@@@@@@ $`
\q
uad (equ. 3.42)
`$
which by solving the previous equations can be evaluated to:
>
*n*1 cos *θ*~1~ − *n*2 cos *θ*~2~
>
cos *θ*~1~ + cos *θ*~2~ *µ*~1~ *µ*~2~
>
[2*n*1]{.underline} cos *θ*~1~
>
*µ*~1~
*.* (3.43)
*t*⊥ = *n*~1~ *n*~2~
>
cos *θ*~1~ + cos *θ*~2~ *µ*~1~ *µ*~2~
@@@@@@@@ $`
\q
uad (equ. 3.43)
`$
__**chap5 TM Wave**__
...
...
@@ -632,29 +494,15 @@ transverse. From figure [3.8](#_bookmark67) we can write using the two
tangential boundary conditions and the relations $`
\o
verrightarrow{B}
`$ = *µH*,
\|$`
\o
verrightarrow{B}
`$\| = ^[\|$`
\o
verrightarrow{E}
`$\|]{.underline}^ *n*:
*n*1 (*E*^0^ − *E*^0^) = *n*2 *E*^0^ *.*
@@@@@@@@
Solving the system we obtain the reflection and transmission
coefficients for a TM (/I or *p*) wave as:
*n*1 cos *θ*~2~ − *n*2 cos *θ*~1~
cos *θ*~1~ + cos *θ*~2~ *µ*~2~ *µ*~1~
>
[2*n*1]{.underline} cos *θ*~1~
>
*µ*~1~
*.* (3.44)
*t*I/ = *n*~2~ *n*~1~
@@@@@@@@ $`
\q
uad (equ. 3.44)
`$
chap4 Brewster's angle
cos *θ*~1~ + cos *θ*~2~ *µ*~2~ *µ*~1~
>
Let's make a few considerations on the consequences of the Fresnel
relations by plotting the reflection coefficients for *s* and *p*
polarisations. We, first of all, separate the two cases according to
...
...
@@ -662,9 +510,9 @@ the relative value of the two media refrac- tive indices *n*~1~ and
*n*~2~. By using Snell-Descartes law *n*~1~ sin(*θ*~1~) = *n*~2~
sin(*θ*~2~) we have that
a. If
*n*~1~ *\< n*~2~ −→ *θ*~1~ *\θ*~2~
a. If
@@@@@@@
b. If
*n*~1~ *\n*~2~ −→ *θ*~1~ *\< θ*~2~
b. If
@@@@@@@@
chap5 Case a)
...
...
@@ -672,218 +520,124 @@ In this case, we consider the range 0 *θ*~1~ *π/*2 for the incident
angle *θ*~1~. Correspondingly, the refraction angle *θ*~2~ will vary
in the range 0 *θ*~2~ *θ*2*max*. Using Snell we have:
i. For *θ*~1~ = 0 → *θ*~2~ = 0, =⇒ *r*~⊥~ = *r*I/ =
[*n*1−*n*2]{.underline} *\<* 0.
n~1~ \< n~2~ n~1~ \n~2~

Figure 3.9: The snell law for *n*~1~ *\< n*~2~ and *n*~1~ *\n*~2~.
>
1.0
>
n~1~ = 1
>
1.0
>
0.8
>
0.5 n~2~ = 1.5 ✓*B*
>
0.0
>
0.6
>
0.4
>
-0.5
>
-1.0
>
r*~?~*
>
r*~k~*
0 20 40
@@@@@@@@@@@
60 80
>
0.2
>
0.0
0 20 40
![]()
_Figure 3.9: The snell law for *n*~1~ *\< n*~2~ and *n*~1~ *\n*~2~._
60 80
>
Angle of incidence (deg) Angle of incidence (deg)
1.0
0.5
0.0
-0.5
-1.0
0 20
40 60 80
>
1.0
>
0.8
>
0.6
>
0.4
>
0.2
>
0.0
0 20
40 60 80
>
Angle of incidence (deg) Angle of incidence (deg)
>
Figure 3.10: []{#_bookmark68 .anchor}Plot of the reflection
coefficients (*r*~⊥~ and *r*I/) and the correspond- ing reflectivities
(*R*~⊥~ and *R*I/) for case a (top) and case b (bottom).
_Figure 3.10: Plot of the reflection_
_coefficients (*r*~⊥~ and *r*I/) and the correspond- ing reflectivities_
_(*R*~⊥~ and *R*I/) for case a (top) and case b (bottom)._
ii. For *θ*~1~ = *π/*2 → *θ*~2~ = *θ*2*max* =⇒ *r*~⊥~ = −1 and *r*I/ =
+1
@@@@@@@@@
This signifies that for the particular angle *θ~B~* (the Brewster's
angle) *r*I/(*θ~B~*) = 0, as shown in figure [3.10.](#_bookmark68) By
plotting the reflectance (*R* = \|*r*\|2), we see that
>
no reflection occurs for *p*-polarised wave for *θ*~1~ = *θ~B~* and
plotting the reflectance (*R* = \|*r*\|2), we see that no reflection
occurs for *p*-polarised wave for *θ*~1~ = *θ~B~* and
the reflection for *p* waves is, in any case, much smaller than the
reflections for *s* waves for angles close to *θ~B~*. This phenomenon
suggests different applications:
-
The possibility of polarising unpolarised waves by reflection for an
*
The possibility of polarising unpolarised waves by reflection for an
inci- dence angle *θ* = *θ~B~*: the reflected wave will be 100%
linearly polarised while the transmitted one only partially
polarised (see figure [3.11).](#_bookmark69)
-
The possibility of removing unwanted reflections by using polarisers
*
The possibility of removing unwanted reflections by using polarisers
(Po- laroid sun-glasses for instance, figure
[3.12);](#_bookmark70)
-
The possibility of transmitting 100% of the intensity of an incident
*
The possibility of transmitting 100% of the intensity of an incident
wave thought an interface using a proper polarisation and
incidence angle.
{width="2.991770559930009in"
height="2.5861450131233594in"}
Figure 3.11: []{#_bookmark69 .anchor}An illustration of the
polarisation of light that is incident on an interface at Brewster's
angle.
[https://en.wikipedia.org/wiki/Brewster'](https://en.wikipedia.org/wiki/Brewster%27s_angle)
[s_angle](https://en.wikipedia.org/wiki/Brewster%27s_angle)

_Figure 3.11: An illustration of the_
_polarisation of light that is incident on an interface at Brewster's_
_angle._
_[https://en.wikipedia.org/wiki/Brewster'](https://en.wikipedia.org/wiki/Brewster%27s_angle)_
_[s_angle](https://en.wikipedia.org/wiki/Brewster%27s_angle)_
chap5 Case b)
In this case, total reflections will occur for angles *θ*~1~
*θ*1*lim*. The considera- tions on the Brewster's angle stated above
will still hold.
>
The condition *r~p~* = 0 inserted in the Fresnel equation gives
>
*n*~1~ cos *θ*~2~ = *n*~2~ cos *θ~B~* (3.45) while from Snell's law we
have
>
*n*~2~ sin *θ*~2~ = *n*~1~ sin *θ~B~.* (3.46)
>
{width="3.0679155730533685in"
height="0.9943744531933508in"}
>
Figure 3.12: []{#_bookmark70 .anchor}Photographs of a window taken
with a camera polariser filter rotated to two different angles. In the
picture at left, the polariser is aligned with the polarisation angle
of the window reflection. In the picture at right, the polariser has
been rotated 90° eliminating the heavily polarised reflected sunlight.
[https://en.wikipedia.org/wiki/Brewster's_angle](https://en.wikipedia.org/wiki/Brewster%27s_angle)
>
@@@@@@@@ $`
\q
uad (equ. 3.45)
`$
while from Snell's law we have
@@@@@@@@ $`
\q
uad (equ. 3.46)
`$
![]()
_Figure 3.12: Photographs of a window taken_
_with a camera polariser filter rotated to two different angles. In the_
_picture at left, the polariser is aligned with the polarisation angle_
_of the window reflection. In the picture at right, the polariser has_
_been rotated 90° eliminating the heavily polarised reflected sunlight._
_[https://en.wikipedia.org/wiki/Brewster's_angle](https://en.wikipedia.org/wiki/Brewster%27s_angle)_
By multiplying the left and the right terms of the previous equations
together we get
>
sin 2*θ~B~* = sin 2*θ*~2~ (3.47)
>
@@@@@@@@ $`
\q
uad (equ. 3.47)
`$
which gives as only possible solution *θ~B~* + *θ*~2~ = *π/*2 ( i.e.
the transmitted and reflected beams are perpendicular, see figure
[3.11)](#_bookmark69) and *θ~B~* = arctan [*n*2]{.underline} . It is
>
easy to show that *θ~B~ \< θ*1*lim*, i.e. the Brewster's angle is
[3.11)](#_bookmark69) and *θ~B~* = arctan [*n*2]{.underline} . It is easy
to show that *θ~B~ \< θ*1*lim*, i.e. the Brewster's angle is
always smaller than the limit angle for total reflection.
chap4 Total internal reflection
Let's consider the oblique incidence shown in figure
[3.8.](#_bookmark67) The transmitted field is given by
>
$`
\o
verrightarrow{E}
`$*t* = $`
\o
verrightarrow{E}
`$0*ei*\[(*k*~2~)*~x~x*+(*k*~2~)*~z~z*−*ωt*\] (3.48)
>
@@@@@@@@ $`
\q
uad (equ. 3.48)
`$
Using the boundary conditions we have previously found that
>
[]{#_bookmark71 .anchor}( 2 *ω*2 2
*k*~2~)*~x~* = (*k*~1~)*~x~* = *k*~1~ sin *θ*~1~ and *k*2 = *n*2*.*
(3.49)
@@@@@@@@ $`
\q
uad (equ. 3.49)
`$
*c*2
>
Using this relation we can write
(*k*~2~)2 = *k*^2^ − (*k*~2~)2 = *[ω]{.underline}* (*n*^2^ − *n*^2^ sin2
*θ*~1~) *.* (3.50)
@@@@@@@@ $`
\q
uad (equ. 3.50)
`$
When the incidence occurs at the limit angle *θ*~1~ = *θ*1*lim*, Snell
law gives *n*~2~ = *n*~1~ sin *θ*1*lim*. If now we increase the
incidence angle, we have *θ*~1~ *\θ*1*lim* and thus *n*~2~ *\< n*~1~
sin *θ*~1~ or *n*^2^ − *n*^2^ sin2 *θ*~1~ *\<* 0. Plugging this into
equation [3.49,](#_bookmark71) we
>
obtain:
>
2 1
(*k*~2~)
@@@@@@@@ $`
\q
uad (equ. 3.51)
`$
= *i[ω]{.underline}* j*n*^2^ sin2 *θ*~1~ − *n*^2^
>
(3.51)
>
i.e. (*k*~2~)*~z~* is purely imaginary and the transmitted wave
becomes:
>
$`
\o
verrightarrow{E}
`$*t* = $`
\o
verrightarrow{E}
`$0*ei*\[(*k*~2~)*~x~x*−*ωt*\]*e*−(*k*~2~)*~z~z* (3.52)
>
@@@@@@@@ $`
\q
uad (equ. 3.52)
`$
The wave has a propagating character in the *x* direction and an
evanescent character in the *z* direction. Let's consider the case of
a TE wave. The Fresnel relation gives
>
*r* = [*n*~1~ cos *θ*~1~ − *n*~2~ cos *θ*~2~]{.underline} =
[(*k*~1~)*~z~* − (*k*~2~)*~z~*]{.underline}
>
(3.53)
⊥ *n*~1~ cos *θ*~1~ − *n*~2~ cos *θ*~2~ (*k*~1~)*~z~* + (*k*~2~)*~z~*
@@@@@@@@ $`
\q
uad (equ. 3.53)
`$
As (*k*~2~)*~z~* is purely imaginary we have, as expected,
>
\|*r*~⊥~\| = 1 (3.54)
>
@@@@@@@@
but also
*r*~⊥~ = \|*r*~⊥~\|*e^iφ^* = *e^iφ^* (3.55)
@@@@@@@@ $`
\q
uad (equ. 3.55)
`$
i.e. the reflected wave is totally reflected with a phase shift.
...
...
@@ -905,244 +659,101 @@ chap5 TE Wave Incident fields
Considering the situation depicted in figure [3.13,](#_bookmark74) the
incident wavevector is given by:
0
1
@@@@@@@@ $`
\q
uad (equ. 3.56)
`$
**k***~i~* = −*k* cos *θ*
*,* (3.56)
>
1 *k* sin *θ*
>
$`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`$ fields form the picture (or using the plane wave rule
**[B]{.underline}***~i~*
>
we obtain[2](#_bookmark73):
>
= [**k***~i~ **×***]{.underline} $`
\o
verrightarrow{E}
`$*~i~* ),
we obtain :
*ω*
@@@@@@@@@@@@
**[E]{.underline}***i* = []{#_bookmark73 .anchor}−*E*0 e*i* (−*ky* cos
*θ* + *kz* sin *θ* − *ωt*)**ˆe***x* (3.57)
>
2there is "-" sign in front of the fields as the chosen electric field
drawn in figure [3.13](#_bookmark74) is antiparallel to the *x* axis.
chap3 TE Wave TM Wave

![]()
![]()
_Figure 3.13 : Configuration des champs e.m pour le mode TE._
Figure 3.13: []{#_bookmark74 .anchor}Configuration des champs ´e.m
pour le mode TE.
>
and
>
$`
\o
verrightarrow{B}
`$ = 1
>
*i* 1
>
0
>
− *nE*0 sin *θ* e*i* (−*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
*,* (3.58)
@@@@@@@@ $`
\q
uad (equ. 3.58)
`$
chap5 Reflected fields
1 − *nE*0 cos *θ* e*i* (−*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
@@@@@@@@@@@@
The reflected electric field **[E]{.underline}***~r~* = *E*~0~ e*i*
(*ky* cos *θ* + *kz* sin *θ* − *ωt*)**ˆe***~x~* is obtained by
repeating the same procedure. Considering that the incident and
reflected angles are the same, we have:
0
@@@@@@@
1
**k***~r~* = *k* cos *θ ,*
1
1 *k* sin *θ*
>
In addition, applying the boundary condition to the tangential
component of the electric field (which is here the total electric
field) we have *E~r~x* + *E~i~x* = 0. We finally obtain:
**[E]{.underline}***r* = *E*0e*i* (*ky* cos *θ* + *kz* sin *θ* −
*ωt*)**ˆe***x* (3.59)
@@@@@@@@ $`
\q
uad (equ. 3.59)
`$
and
$`
\o
verrightarrow{B}
`$ = 1
>
*r* 1
>
0
>
*nE*0 sin *θ* e*i* (*ky* cos *θ* + *kz* sin *θ ωt*) *c*
>
*.* (3.60)
@@@@@@@@ $`
\q
uad (equ. 3.60)
`$
chap5 Total fields
1 − *nE*0 cos *θ* e*i* (*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
We calculate now the total fields **[E]{.underline}**
>
= **[E]{.underline}** + **[E]{.underline}** , **[B]{.underline}** =
**[B]{.underline}** + **[B]{.underline}**
>
existing in
>
medium 1 for a TE wave:
>
⊥ *i r* ⊥ *i r*
**[E]{.underline}** = *E*0 (e*i* (*ky* cos *θ* + *kz* sin *θ* − *ωt*) −
e*i* (−*ky* cos *θ* + *kz* sin *θ* − *ωt*)l **ˆe***x* =
@@@@@@@@@@
= 2*iE*~0~ sin (*ky* cos *θ*) e*i* (*kz* sin *θ* − *ωt*)
>
**ˆe***~x~*
>
*.* (3.61)
\'- amp..li,.tude
We calculate now the total fields **[E]{.underline}**
., \'-
>
propa..g,.ation
>
., pola\'-r..is,.a.,tion
>
The total magnetic field is given by:
>
0
>
1
@@@@@@@@@@
$`
\o
verrightarrow{B}
`$ = 1
existing in medium 1 for a TE wave:
2*inE*0 sin *θ* sin (*ky* cos *θ*) e*i* (*kz* sin *θ* − *ωt*)
>
*.* (3.62)
@@@@@@@@ $`
\q
uad (equ. 3.61)
`$
**-- [B]{.underline}**~⊥~
@@@@@@@@ $`
\q
uad (equ. 3.62)
`$
= [2*nE*~0~]{.underline} *\_u*
>
*c*
>
cos *θ* e*i* (*kz* sin *θ* − *ωt*), i.e. the magnetic
>
field is parallel to the interface.
- The fields have a standing wave character along the *y* axis (see
figure [3.14
).](#_bookmark75)
The positions of the nodes and
figure [3.14
]
The positions of the nodes and
antinodes plane for the electric field are given by:
- $`
\o
verrightarrow{E}
`$ = **0** for *y~n~*
@@@@@@@@@@@@@
*nπ k* cos *θ*
![]()
, *n* integer
![]()
- **[E]{.underline}** \| is maximum for *y~p~*
= [(2*p* + 1)*π*]{.underline} , *p* integer.
>
*k θ*
>
same *z* components
>
 propagating wave // *z*
>
antiparallel *y* components
>
standing wave // *y*
>
Figure 3.14: []{#_bookmark75 .anchor}The total electric field
amplitude of a TE wave upon oblique incident onto a perfect conductor.
The field has a propagation character along the *z* axis and a
standing wave character along the *y* axis. A node and an antinode
plane are displayed. The blue and red colours represent the minimum
and maximum of the field amplitude. You can easily reproduce this
pattern with water waves.
_Figure 3.14: The total electric field_
_amplitude of a TE wave upon oblique incident onto a perfect conductor._
_The field has a propagation character along the *z* axis and a_
_standing wave character along the *y* axis. A node and an antinode_
_plane are displayed. The blue and red colours represent the minimum_
_and maximum of the field amplitude. You can easily reproduce this_
_pattern with water waves._
chap5 Poynting vector
To this aim it is convenient to revert to the real notation for the
fields:
$`
\o
verrightarrow{E}
`$~⊥~ = −2*E*~0~ sin (*ky* cos *θ*) sin (*kz* sin *θ* − *ωt*)
**ˆe***~x~,* (3.63)
@@@@@@@@ $`
\q
uad (equ. 3.63)
`$
and
$`
\o
verrightarrow{B}
`$ = 1
>
⊥ 1
>
0
>
−2 *c* sin *θ* sin (*ky* cos *θ*) sin (*kz* sin *θ* − *ωt*)
>
*.* (3.64)
>
1 −2 *c* cos *θ* cos (*ky* cos *θ*) cos (*kz* sin *θ* − *ωt*)
>
Calculating $`
\o
verrightarrow{S}
`$ = [$`
\o
verrightarrow{E}
`$⊥ ***×***]{.underline} [$`
\o
verrightarrow{B}
`$⊥]{.underline}
*µ*~0~
1
@@@@@@@@ $`
\q
uad (equ. 3.64)
`$
we obtain:
0
$`
\o
verrightarrow{S}
`$ = − *µ c θ*
>
*ky θ*
>
*kz θ* − *ωt*
>
*.* (3.65)
*nE*^2^
4 sin *θ µ*~0~*c*
>
sin2
>
(*ky*
>
cos
*θ*) sin2
(*kz*
>
sin
*θ* − *ωt*)
@@@@@@@@ $`
\q
uad (equ. 3.65)
`$
while its time average is:
($`
\o
verrightarrow{S}
`$)*~t~* =
@@@@@@@@@@ $`
\q
uad (equ. 3.66)
`$
2
>
[0]{.underline} sin *θ* sin2
>
*µ*~0~*c*
>
(*ky* cos *θ*) **ˆe***~z~* (3.66)
>
Power is therfore carried along the positive *z* direction and is null
on the nodal planes.
...
...
@@ -1151,90 +762,37 @@ chap5 TM wave
The discussion is similar to the TE case with the role of $`
\o
verrightarrow{E}
`$ and
$`
\o
verrightarrow{B}
`$ exchanged. Referring to figure [3.13](#_bookmark74) we have
again for the wavevectors:
>
0 0
>
1 1
>
**k***~i~* = −*k* cos *θ*
1 *k* sin *θ*
*,* **k***~r~* = *k* cos *θ ,*
>
1 *k* sin *θ*
$`
\o
verrightarrow{E}
`$*~i~* = 1
1
0
>
*E*0 sin *θ* e*i* (−*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
*.* (3.67)
@@@@@@@ $`
\q
uad (equ. 3.67)
`$
and
1 *E*0 cos *θ* e*i* (−*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
**[B]{.underline}** = − [*nE*0]{.underline} e*i* (−*ky* cos *θ* + *kz*
sin *θ* − *ωt*)**ˆe**
*,* (3.68)
@@@@@@@@ $`
\q
uad (equ. 3.68)
`$
Using the boundary condition for the tangential component of the
electric field *E~r~z* + *E~i~z* = 0 and the fact the field experience
total reflection, $`
\o
verrightarrow{E}
`$*~i~* = $`
\o
verrightarrow{E}
`$*~r~* we obtain:
$`
\o
verrightarrow{E}
`$*~r~* = 1
1
@@@@@@@@@@@ $`
\q
uad (equ. 3.69)
`$
0
>
*E*0 sin *θ* e*i* (*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
*.* (3.69)
>
and
>
1 −*E*0 cos *θ* e*i* (*ky* cos *θ* + *kz* sin *θ* − *ωt*)
>
**[B]{.underline}** = − [*nE*0]{.underline} e*i* (*ky* cos *θ* + *kz*
sin *θ* − *ωt*)**ˆe**
*.* (3.70)
@@@@@@@@@@ $`
\q
uad (equ. 3.70)
`$
Finally, the total fields existing in medium 1 for a TM ( or *p*) wave
are given by:
>
$`
\o
verrightarrow{E}
`$ = 1
>
I/ 1
>
0
>
2*E*~0~ sin *θ* cos (*ky* cos *θ*) e*i* (*kz* sin *θ* − *ωt*)
>
*.* (3.71)
>
@@@@@@@@@@@@
and
>
1 −2*iE*~0~ cos *θ* sin (*ky* cos *θ*) e*i* (*kz* sin *θ* − *ωt*)
**[B]{.underline}**~I/~
@@@@@@@@@@@@
= −2 [*nE*0]{.underline} cos (*ky* cos *θ*) e*i* (*kz* sin *θ* −
*ωt*)**ˆe** *.* (3.72)
>
The same remarks made for the total TE wave can repeated here for the
total TM wave we the appropriate changes for the role of the $`
\o
verrightarrow{E}
`$ and
$`
\o
verrightarrow{B}
`
$ fields.
**-- [B]{.underline}**~I/~
= − [2*nE*0]{.underline} e*i* (*kz* sin *θ* − *ωt*)**ˆe**
@@@@@@@@@@@@@
, i.e. the magnetic field is
...
...
@@ -1244,33 +802,9 @@ parallel to the interface.
axis (see figure
[
3.14).
](
#_bookmark75
)
The positions of the nodes
and antinodes planes for the magentic fields are given by:
**-- [B]{.underline}**~I/~
= **0** for *y~n~*
>
= [(2*n* + 1)*π*]{.underline} , *n* integer.
>
*k θ*
>
**--** \|**[B]{.underline}**~I/~\| is maximum for *y~p~*
>
= *[pπ]{.underline}* , *p* integer.
>
*k θ*
@@@@@@@@@@
Finally, the time-averaged Poytining vector is given by:
2*E*^2^*n*
[0]{.underline} 2
($`
\o
verrightarrow{S}
`
$)
*~t~*
=
sin
*θ*
cos
>
*µ*
~0~
*c*
>
(
*ky*
cos
*θ*
)
**ˆe**
*~z~*
(3.73)
>
[]
{#_bookmark76 .anchor}
**Chapter 4**
@@@@@@@@
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment