Commit 643f1bfb authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent c10ddb43
Pipeline #14807 canceled with stage
......@@ -39,7 +39,7 @@ while the third and fourth
@@@@@@@@@@@@
will give information on the tangential components of $`\overrightarrow{E}`$ and $`\overrightarrow{H}`$.
>
To obtain the boundary conditions we consider a surface separating two
Linear Homogeneous and Isotropic (LHI) media whose properties such as that
the permittivity and permeability are different. We denote as
......@@ -47,159 +47,152 @@ $`\overrightarrow{E}_1\,,\overrightarrow{B}_1\,,\overrightarrow{D}_1`$ and $`\ov
material 1 close to its surface. Likewise an index 2 will be used for
the fields in the second material.
Figure 3.1: []{#_bookmark59 .anchor}Scheme for deriving boundary
conditions for perpendicular field components. S~1~, S~2~ and S^t^
represent respectively the surface at the top, bot- tom and interface.
![](electromag-in-media-reflexion-transmission-fig-31.jpg)
_Figure 3.1 : Scheme for deriving boundary conditions for perpendicular field components._
_$`S_1\,, S_2`$ and $`S'`$ represent respectively the surface at the top, bot- tom and interface._
>
__**Normal components**__
##### Normal components
__D vector__
Let's apply Maxwell equation (i) to the small cylinder showed in
figure [3.1](#_bookmark59) which extends from one side to the other on
figure [3.1] which extends from one side to the other on
the separation surface. This box has a base surface A and an
infinitesimally small thickness *δ*. We get:
>
tS $`\overrightarrow{D}`$ · d**a** = {S
>
$`\overrightarrow{D}`$~1~ · d**a**~1~ + {S
>
$`\overrightarrow{D}`$~2~ · d**a**~2~ + {S
infinitesimally small thickness $`\delta`$. We get:
side
@@@@@@@@@@@@@@@@@@@@@@@@@
$`\overrightarrow{D}`$ · d**a** = {*V*
>
*ρ~c~* d*V.*
>
If we now let *δ* 0 symmetrically with respect to the separation
If we now let $`\delta\longrightarrow 0`$ symmetrically with respect to the separation
surface such that the cylinder gets "pressed" onto the surface:
- The third term on the left hand side of the previous equation will
* The third term on the left hand side of the previous equation will
be negligible as the flux of the vector $`\overrightarrow{D}`$, which is a finite
quantity, through an infinitesimally small surface will approach
0.
- The volume charge will be reduced to a surface charge at the
* The volume charge will be reduced to a surface charge at the
interface only as the volume will approach 0. The volume charge
density is re- placed by a surface charge density *σ~s~* and the
density is replaced by a surface charge density $`\sigma`$ and the
volume integral is replaced by surface integral over the middle
surface S^t^.
surface $`S'`$.
We obtain:
{S1 {S {Sl
@@@@@@@@
$`\overrightarrow{D}`$~1~ · d**a**~1~ + $`\overrightarrow{D}`$~2~ · d**a**~2~ = *σ~s~* d*a.* (3.7)
>
Now, considering that d**a**~2~ = −d**a**~1~ we can write:
Now, considering that $`d\overrightarrow{a_2}=-d\overrightarrow{a_1}`$ we can write:
{S ($`\overrightarrow{D}`$~1~ − $`\overrightarrow{D}`$~2~) · d**a**~1~ = {Sl *σ~s~* d*a.* (3.8)
@@@@@@@@@@@@@
Finally, as S~1~ = S^t^ and d**a**~1~ = **nˆ**~2→1~d*a*~1~ we can
Finally, as $`S_1=S'`$ and $`d\overrightarrow{a_2}=\overrightarrow{n}_{2\rightarrow 1}\,da_1`$ we can
write:
>
**nˆ**~2→1~ · ($`\overrightarrow{D}`$~1~ − $`\overrightarrow{D}`$~2~) = *σ~s~* (3.9)
>
@@@@@@@@@
or
>
*D*~1*n*~ − *D*~2*n*~ = *σ~s~* (3.10)
>
@@@@@@@@@@@
The normal component of the vector $`\overrightarrow{D}`$ is in general discontinuous.
It is continuos only if there are no conduction charges at the
separation surface.
__chap5 B vector__
__B vector__
The situation is identical for the vector $`\overrightarrow{B}`$, the only difference
being that the right hand side of the equation is always 0. We
conclude that:
>
**nˆ**~2→1~ · ($`\overrightarrow{B}`$~1~ − $`\overrightarrow{B}`$~2~) = 0 (3.11)
>
@@@@@@@@@
or
>
*B*~1*n*~ − *B*~2*n*~ = 0 (3.12)
>
@@@@@@@@@
The normal component of $`\overrightarrow{B}`$ is always conserved.
__**Tangential components**__
![](media/image171.jpeg)
##### Tangential components
Figure 3.2: []{#_bookmark60 .anchor}Contour for deriving boundary
conditions for parallel field com- ponents.
![](electromag-in-media-reflexion-transmission-fig-32.jpg)
_Figure 3.2 : Contour for deriving boundary conditions for parallel field components._
__chap5 E vector__
We integrate the third Maxwell equation around the rectangular contour
C that straddles the boundary of width W and thickness *δ* as shown in
figure [3.2.](#_bookmark60) We chose to integrate the line integral
C that straddles the boundary of width W and thickness $`\delta`$ as shown in
figure [3.2.]. We chose to integrate the line integral
following the right-hand sense relative to the surface normal
**nˆ***~a~*. By letting *δ* → 0, we get
>
t $`\overrightarrow{E}`$ · *d***l** = $`\overrightarrow{E}`$~1~ · *A_B* + $`\overrightarrow{E}`$~2~ · *C_D* = −
[d]{.underline} { $`\overrightarrow{B}`$ · *d*$`\overrightarrow{S}`$ → 0 (3.13)
>
$`\overrightarrow{n_a}`$. By letting $`\delta\right 0`$, we get
@@@@@@@@@@@
as the line integral along the sides goes to zero and the flux of the
induction field $`\overrightarrow{B}`$, which is a finite quantity, approaches 0.
Considering that *C_D* =
>
*A_B* = d**l**, we get:
>
($`\overrightarrow{E}`$~1~ − $`\overrightarrow{E}`$~2~) · d**l** = 0 ∀d**l** /I to the separation
surface (3.14)
>
Considering that $`\overrightarrow{CD}-\overrightarrow{AB}=d\overrightarrow{l}`$, we get:
@@@@@@@@@@
or again
*E*~1*T*~ − *E*~2*T*~ = 0 (3.15)
@@@@@@@@@@@@
i.e. the tangential components of the electric field are always
conserved at the interface. This condition can also be written:
>
**nˆ**~2→1~ ***×*** ($`\overrightarrow{E}`$~1~ − $`\overrightarrow{E}`$~2~) = 0*.* (3.16)
__chap5 H vector__
@@@@@@@@@@ $`\quad equ. 3.16)`$
Following the same reasoning as for the $`\overrightarrow{E}`$ vector we write for the
left hand
>
side when *δ* → 0: $`\overrightarrow{H}`$
__H vector__
C
Following the same reasoning as for the $`\overrightarrow{E}`$ vector we write for the
left hand side when $`\delta\right 0`$ :
· *d***l** = $`\overrightarrow{H}`$
$`\overrightarrow{H}`$
~1~ · *A_B*
@@@@@@@@@@@@@ $`\quad equ. 3.17)`$
\+ $`\overrightarrow{H}`$~2~ · *C_D.*
>
(3.17)
>
The right hand side needs more attention. The flux of the vector $`\overrightarrow{D}`$
approaches
>
0\. However the flux of the vector $`\overrightarrow{j}`$ over an infinitesimal surface
approaches 0. However the flux of the vector $`\overrightarrow{J}`$ over an infinitesimal surface
can give a finite value: the surface integral reduces to an integral
over the line of width W equal to the side of the rectangle. No volume
current can contribute, however a surface current $`\overrightarrow{j}`$*~s~* (i.e. a
current flowing on the separation surface with dimensions \[*A/m*\]
not \[*A/m*^2^\] as $`\overrightarrow{j}`$) can. This is typically the case of a
current can contribute, however a surface current $`\overrightarrow{J}_S`$ (i.e. a
current flowing on the separation surface with dimensions $`[A/m]`$
not $`[A/m*^2]`$ as $`\overrightarrow{J}`$) can. This is typically the case of a
perfect conductor where a finite current can flow through a
infinitesimally small area. We get:
>
@@@@@@@@ $`\quad equ. 3.18)`$
or again
>
($`\overrightarrow{H}`$~1~ − $`\overrightarrow{H}`$~2~) · d**l** = *J~s~* (3.18)
>
*H*~1*T*~ − *H*~2*T*~ = *J~s~* (3.19)
>
@@@@@@@@ $`\quad equ. 3.19)`$
i.e. the tangential components of the magnetic field $`\overrightarrow{H}`$ is
discontinuous unless no surface currents exist. As for the electric
field, this condition can also be written:
>
**nˆ**~2→1~ ***×*** ($`\overrightarrow{H}`$~1~ − $`\overrightarrow{H}`$~2~) = $`\overrightarrow{j}`$*~s~* (3.20)
@@@@@@@@ $`\quad equ. 3.20)`$
!! *Summary*
!!
! *Remarks*
!
! * If medium 1 & 2 are perfect dielectrics then there are no charges
! nor surface currents at the interface, and so the tangential component
! of $`\overrightarrow{H}`$ and the normal component of $`\overrightarrow{D}`$ are both continuous.
!
! * If medium 1 is a perfect dielectric and medium 2 is a perfect metal,
! there are charges and surface currents at the interface, and so the
! tangential component of $`\overrightarrow{H}`$ and the normal component of $`\overrightarrow{D}`$ are
! not continuous.
!
! * In case of linear media, the 4 relations can be expressed in terms
! of $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$ alone using the constitutive relations
! $`\overrightarrow{D}=\epsilon\,$`\overrightarrow{E}`$ and $`\overrightarrow{B}=\mu\,$`\overrightarrow{H}`$.
&&&&&&&&&&&&&&&&&&&&&&&&&
#### chap2 Reflection and transmission at normal incidence
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment