Commit 65d7f977 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent c4b0bc37
Pipeline #15571 canceled with stage
......@@ -64,7 +64,8 @@ $`\begin{align} U(&x,t) = U_1(x,t) + U_2(x,t) \\
&\\
&=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
&\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_1)}{2} + \dfrac{\varphi_2-\varphi_2)}{2}\Big) + \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2)}{2} + \dfrac{\varphi_1-\varphi_1)}{2}\Big)\,\Big]\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_1}{2} + \dfrac{\varphi_2-\varphi_2}{2}\Big) \\
&\quad\quad + \,cos\Big(\alpha + \dfrac{\varphi_2+\varphi_2}{2} + \dfrac{\varphi_1-\varphi_1}{2}\Big)\,\Big]\\
&\\
&=A\;\big[\,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_2)}{2} + \dfrac{\varphi_1-\varphi_2)}{2}\Big) + \,cos\Big(\alpha + \dfrac{\varphi_1+\varphi_2)}{2} - \dfrac{\varphi_1-\varphi_2)}{2}\Big)\,\Big]
\end{align}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment