Commit 67130fa8 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent e3de3e8f
Pipeline #15582 canceled with stage
...@@ -57,10 +57,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$ ...@@ -57,10 +57,10 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
$`U_1(x,t) = A\cdot cos(kx - \omega t + \varphi_1)`$. $`U_1(x,t) = A\cdot cos(kx - \omega t + \varphi_1)`$.
$`U_2(x,t) = A\cdot cos(kx - \omega t + \varphi_2)`$. $`U_2(x,t) = A\cdot cos(kx - \omega t + \varphi_2)`$.
$`U(x,t) =A\;\big[cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]`$
$`\begin{align} \mathbf{\color{'brown'}{U(&x,t)}} = U_1(x,t) + U_2(x,t) \\
$`\begin{align} \mathbf{\color{brown}{U(&x,t)}} = U_1(x,t) + U_2(x,t) \\
&\\ &\\
&=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big] &=A\;\big[\,cos(\underbrace{kx - \omega t}_{\text{ posons }\\ kx - \omega t \,=\, \alpha} + \varphi_1) + cos(\underbrace{kx - \omega t}_{=\; \alpha} + \varphi_1)\,\big]
&\\ &\\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment