Commit 690d1040 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 78f43cb8
Pipeline #12757 canceled with stage
......@@ -144,13 +144,13 @@ $`\Longrightarrow`$
* *Maxwell-Faraday* :
À tout instant t, et pour tout volume $`\tau`$ :
À tout instant t, et pour toute surface fermée $`S`$ :
* $`\forall \overrightarrow{r}, \overrightarrow{rot} \,\overrightarrow{E} = -\dfrac{\partial \overrightarrow{B}}{\partial t}`$
$`\Longrightarrow \iiint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau = \iiint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau`$
$`\Longrightarrow \oiint_S \overrightarrow{rot} \,\overrightarrow{E}\cdot\overrightarrow{dS} = \oiint_S\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right)\cdot\overrightarrow{dS}`$
* $`\left.\begin{array}{l}
\iiint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau = \iiint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau \\
\iint_{\Ltau} \overrightarrow{rot} \,\overrightarrow{E}\,d\tau = \iint_{\Ltau}\left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right) d\tau \\
\text{Newton : espace et temps indépendants}
\end{array}\right\}
\Longrightarrow`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment