Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
6cd5889f
Commit
6cd5889f
authored
Jan 28, 2021
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
2c9729df
Pipeline
#4883
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
8 deletions
+16
-8
cheatsheet.fr.md
...rary_ins/70.wave-optics/10.interferences/cheatsheet.fr.md
+16
-8
No files found.
12.temporary_ins/70.wave-optics/10.interferences/cheatsheet.fr.md
View file @
6cd5889f
...
...
@@ -595,7 +595,9 @@ Les distances parcourues d'une part entre le point $` X`$ et l'infini pour le fa
$
`\delta_{UW}=\delta_{UV}+\delta_{VW}=\dfrac{2\,n_2\,e}{cos\,\theta_2}`
$
$
`\delta_{UX}=n_1\cdot UW\cdot sin\,\theta_{inc}=n_1\cdot (UH+HW)\cdot sin\,\theta_{inc}=2\,n_1\cdot UH\cdot sin\,\theta_{inc}`
$$
`\;= 2\,n_1\cdot e\cdot tg \,\theta_2\cdot sin\,\theta_{inc}`
$
$
`\delta_{UX}=n_1\cdot UW\cdot sin\,\theta_{inc}=n_1\cdot (UH+HW)\cdot sin\,\theta_{inc}`
$
$
`\;=2\,n_1\cdot UH\cdot sin\,\theta_{inc}`
$
$
`\;= 2\,n_1\cdot e\cdot tg \,\theta_2\cdot sin\,\theta_{inc}`
$
La relation de Snell-Descartes $
`n_1\cdot sin\,\theta_{inc} = n_2\cdot sin\,\theta_2`
$ permet de réexprimer la relation précédente uniquement en fonction de l'angle $
`\theta_2`
$
...
...
@@ -655,7 +657,8 @@ $`\underline{A}_{\,tot}=A\cdot r_{12} + A \cdot r_{21} \cdot t_{12} \cdot t_{21}
<br>
Comme $
`r_{21}=-1\cdot r_{12}=e^{\,i\,\pi}\cdot r_{12}`
$
<br>
<br>
$
`\underline{A}_{\,tot}=A\cdot r_{12}\cdot \left( 1 + e^{\,i\,\pi}\cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)`
$
$
`\underline{A}_{\,tot}=A\cdot r_{12}\cdot`
$
$
`\;\left( 1 + e^{\,i\,\pi}\cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)`
$
$
`\;=A\cdot r_{12}\cdot \left( 1 + \cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\pi)}\right)`
$
$
`\;=A\cdot r_{12}\cdot \left( 1 + \cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)`
$
<br>
...
...
@@ -699,11 +702,14 @@ $`\;=A \cdot \left( 1 + R\cdot e^{\displaystyle\,i \left(\dfrac{\,4\,\pi\,n_2\,e
<br>
$
`I \propto \underline{A}_{\,tot}\,\underline{A}_{\,tot}^*`
$
<br>
<br>
$
`I \propto A^2\cdot r_{12}^2\cdot \left( 1 +e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)\cdot \left( 1 +e^{\displaystyle\,-\,i(\phi_{géo}+\phi_{ref})}\right)`
$
<br>
$
`I \propto A^2\cdot r_{12}^2\cdot \left( 1 +e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)`
$
$
`\;\cdot\left( 1 +e^{\displaystyle\,-\,i(\phi_{géo}+\phi_{ref})}\right)`
$
<br>
<br>
$
`I \propto A^2\cdot r_{12}^2\cdot \left( 1 +e^{\displaystyle\,i\,(\phi_{géo}+\pi)}\right)\cdot \left( 1 +e^{\displaystyle\,-\,i(\phi_{géo}+\pi)}\right)`
$
<br>
$
`I \propto A^2\cdot r_{12}^2\cdot \left( 1 +e^{\displaystyle\,i\,(\phi_{géo}+\pi)}\right)`
$
$
`\;\cdot\left( 1 +e^{\displaystyle\,-\,i(\phi_{géo}+\pi)}\right)`
$
<br>
<br>
$
`I \propto A^2\cdot r_{12}^2\cdot \left( 1 -e^{\displaystyle\,i\,\phi_{géo}}\right)\cdot \left( 1 -e^{\displaystyle\,-\,i\,\phi_{géo}}\right)`
$
<br>
$
`I \propto A^2\cdot r_{12}^2\cdot \left( 1 -e^{\displaystyle\,i\,\phi_{géo}}\right)`
$
$
`\;\cdot \left( 1 -e^{\displaystyle\,-\,i\,\phi_{géo}}\right)`
$
<br>
<br>
$
`I \propto A^2\cdot R\cdot \left( 2 - e^{\displaystyle\,i\,\phi_{géo}}+ e^{\displaystyle\,-\,i\,\phi_{géo}}\right)`
$
<br>
<br>
...
...
@@ -726,7 +732,8 @@ Les franges d'interférence par réflexion sont à centre noir. En effet lorsque
<br>
$`
I
\p
ropto
\u
nderline{A}_{
\,
tot}
\,\u
nderline{A}_{
\,
tot}^
*
`$<br>
<br>
$`
I
\p
ropto A^2
\c
dot
\l
eft( 1+ R
\c
dot e^{
\d
isplaystyle
\,
i
\,\p
hi_{géo}}
\r
ight)
\c
dot
\l
eft( 1+ R
\c
dot e^{
\d
isplaystyle
\,
-i
\,\p
hi_{géo}}
\r
ight)
`$<br>
$`
I
\p
ropto A^2
\c
dot
\l
eft( 1+ R
\c
dot e^{
\d
isplaystyle
\,
i
\,\p
hi_{géo}}
\r
ight)
`$
$`
\;\c
dot
\l
eft( 1+ R
\c
dot e^{
\d
isplaystyle
\,
-i
\,\p
hi_{géo}}
\r
ight)
`$<br>
<br>
$`
I
\p
ropto A^2
\c
dot
\l
eft
[
1+ R^2 + R \cdot \left( e^{\displaystyle\,i\,\phi_{géo}}+ e^{\displaystyle\,\,i\,\phi_{géo}} \right)\right
]
`$<br>
<br>
...
...
@@ -737,7 +744,7 @@ $`I \propto A^2 \cdot \left[ 1-2\,R+ R^2 + \left( 2\,R+2\,R\,cos\, \phi_{géo}\r
$`
I
\p
ropto A^2
\c
dot
\l
eft
[
\left( 1-R\right)^2+ 2\,R\cdot\left( 1+\,cos\, \phi_{géo}\right)\right
]
`$<br>
<br>
**$`
I
\p
ropto A^2
\c
dot
\l
eft
[
\left( 1-R\right)^2+ 4\,R\cdot cos^2\,\dfrac{\phi_{géo}}{2}\right
]
`$**
$`
\;
=A^2
\c
dot
\l
eft
[
\left( 1-R\right)^2+ 4\,R\cdot cos^2\, \left( \dfrac{\,2\,\pi\,n_2\,e\cdot cos\,\theta_2}{\lambda}\right)\right
]
`$<br>
$`
=A^2
\c
dot
\l
eft
[
\left( 1-R\right)^2+ 4\,R\cdot cos^2\, \left( \dfrac{\,2\,\pi\,n_2\,e\cdot cos\,\theta_2}{\lambda}\right)\right
]
`$<br>
<br>
Si $`
R
<
<
1
`$,
le
**
contraste
des
franges
sera
tr
è
s
faible
**
:
<
br
>
<br>
...
...
@@ -755,7 +762,8 @@ $`=\;\dfrac{( 1+R)^2-( 1-R)^2}{( 1+R)^2+( 1-R)^2}`$
!!!
!!! $
`( 1+R)^2=(1+0.04)^2=1,082`
$ et $
`( 1-R)^2=(1-0.04)^2=0,922`
$
!!!
!!!
*$`\mathcal{V}`$*
$
`\;=\dfrac{( 1+R)^2-( 1-R)^2}{( 1+R)^2+( 1-R)^2}=\dfrac{1,082-0,922}{(1,082+0,922)}`
$
*$`\;=\dfrac{0,160}{(2,004)}\simeq0;08`$*
!!!
*$`\mathcal{V}`$*
$
`\;=\dfrac{( 1+R)^2-( 1-R)^2}{( 1+R)^2+( 1-R)^2}=\dfrac{1,082-0,922}{(1,082+0,922)}`
$
$
`\;=\dfrac{0,160}{(2,004)}\simeq0;08`
$

...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment