Commit 7910f876 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 6b5f9985
Pipeline #15611 canceled with stage
......@@ -60,11 +60,17 @@ $`\newcommand{\ddpt}[1]{\overset{\large\bullet\bullet}{#1}}`$
&=\sqrt{4\,A^2 \cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
\end{align}`$
\underbrace{ {toto}
{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
$`\begin{align} A_{onde} &= \left| \,2\,A\cdot cos\Big(\dfrac{\varphi_1 - \varphi_2}{2} \Big) \,\right|\\
&\\
&=\sqrt{4\,A^2 \cdot \underbrace{cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)\,cos\Big(\dfrac{\varphi_1 - \varphi_2}{2}\Big)}
_{\left.\begin{align} cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
cos(a-b)=cos(a)cos(b)+-sin(a)sin(b)\end{align}\right\}\Rightarrow\\
cos(a)cos(a)=cos^2(a)=\frac{1}{2}[cos(a+a)+cos(a-a)]frac{1}{2}[1 + cos(2a)]}
}\end{align}`$
\underbrace{ {toto}
{
@@@@@@@@@@@@@@@@@@@@@@@
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment