Commit 7924b215 authored by Claude Meny's avatar Claude Meny

Update textbook.fr.md

parent e9fdfc6c
Pipeline #13022 canceled with stage
......@@ -656,7 +656,8 @@ avec
En notation réelle, on obtient finalement pour l'induction électrique :
$`\displaystyle \overrightarrow{D}(\overrightarrow{r},t) = \epsilon_0 \cdot e^{-\overrightarrow{k''}.\overrightarrow{r}}`$$`\times \left( \epsilon_r' \; cos (\overrightarrow{k'}.\overrightarrow{r} - \omega t) - \epsilon_r'' \; sin (\overrightarrow{k'} \,\overrightarrow{r}-\omega t) \right) \overrightarrow{E}_0`$
$`\displaystyle \overrightarrow{D}(\overrightarrow{r},t) = \epsilon_0 \cdot e^{-\overrightarrow{k''}.\overrightarrow{r}}`$
$`\times \left( \epsilon_r' \; cos (\overrightarrow{k'}.\overrightarrow{r} - \omega t) - \epsilon_r'' \; sin (\overrightarrow{k'} \,\overrightarrow{r}-\omega t) \right) \overrightarrow{E}_0`$
avec
......@@ -664,7 +665,8 @@ $`\quad\epsilon_r' (\omega) = 1 + \chi_e' (\omega) \; \text{ et } \; \epsilon_r'
On peut aussi écrire l'induction électrique sous la forme :
$`\displaystyle \quad \overrightarrow{D}(\overrightarrow{r},t) = \epsilon_0\;\sqrt{\epsilon_r'^2+\epsilon_r''^2}\cdot e^{-\overrightarrow{k''}.\overrightarrow{r}}`$$`\times \;cos\,\left(\overrightarrow{k'} .\overrightarrow{r}-\omega. t+\phi_D) \right) \overrightarrow{E}_0`$,
$`\displaystyle \quad \overrightarrow{D}(\overrightarrow{r},t) = \epsilon_0\;\sqrt{\epsilon_r'^2+\epsilon_r''^2}\cdot e^{-\overrightarrow{k''}.\overrightarrow{r}}`$
$`\times \;cos\,\left(\overrightarrow{k'} .\overrightarrow{r}-\omega. t+\phi_D) \right) \overrightarrow{E}_0`$,
avec
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment