Commit 7fc2349d authored by Claude Meny's avatar Claude Meny

Update cheatsheet.en.md

parent 6b9ffe89
Pipeline #648 failed with stage
in 21 seconds
......@@ -96,7 +96,7 @@ $`sin(\alpha) \approx tan (\alpha) \approx \alpha`$ (rad), et $`cos(\alpha) \ap
$`\dfrac{1}{\overline{SA_{ima}}}+\dfrac{1}{\overline{SA_{obj}}}=\dfrac{2}{\overline{SC}}`$  (equ.1)
* **Transverse magnification expression** :<br><br>
$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$$&nbsp;&nbsp;(equ.2)
$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$&nbsp;&nbsp;(equ.2)
You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1)
then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
......@@ -109,6 +109,18 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$.
! $`\overline{M_T}=+1`$.
! *USEFUL 2° :<br>
! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from
! those of the spherical mirror**, with the following assumptions :<br><br>
! $`n_{eme}=-n_{inc}`$<br><br>
! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction
! of propagation reverses after reflection on the mirror)<br><br>
!
! are obtained by rewriting these two equations for a spherical refracting surface in the limit
! when $`|\overline{SC}|\longrightarrow\infty`$.
! Then we get for a plane mirror :<br>
! $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and $`\overline{M_T}=+1`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment