Commit 801cd477 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.en.md

parent a6d7d37e
Pipeline #21624 canceled with stage
......@@ -522,7 +522,7 @@ I recognize here the law of conservation of charge.
<br>
*$`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)=0`$*,
!!!!
!!!! <details markdown=1>
!!!! <summary>Reminders about the scalar triple product</summary>
!!!! The scalar triple product of three vectors $`\vec{a}, \vec{b}, \vec{c}`$, denoted $`(\vec{a}, \vec{b}, \vec{c})`$
......@@ -549,7 +549,7 @@ I recognize here the law of conservation of charge.
!!!! </details>
!!!!
* $`\Longrightarrow`$ the **work of the Lorentz force** simplifies to:
* $`\Longrightarrow`$ the **work of the Lorentz force** simplifies to :
<br>
**$`d\mathcal{W}_{Lorentz} = q\,\overrightarrow{E}\cdot\overrightarrow{dl}`$**
......@@ -578,7 +578,7 @@ I recognize here the law of conservation of charge.
<br>
**$`d\mathcal{P}_{yielded} = n\,\big( q\,\overrightarrow{E}\cdot\overrightarrow{v}\big)\,d\tau`$**
* Expressed *with the volume charge density $`\rho=n\,q`* :
* Expressed *with the volume charge density $`\rho=n\,q`$* :
<br>
$`d\mathcal{P}_{yielded} = \big(n\, q\big)\,\overrightarrow{E}\cdot\overrightarrow{v}\,d\tau = \rho\,\overrightarrow{E}\cdot\overrightarrow{v}\,d\tau`$
......@@ -590,7 +590,7 @@ I recognize here the law of conservation of charge.
##### Power yielded in a material with multiple types of charge carriers
* When a material contains **multiple types of charge carriers $`q_i`$**
in *concentrations $`n_i`* and with *drift velocities $`\overrightarrow{v_{d\,i}}`* :
in *concentrations $`n_i`* and with *drift velocities $`\overrightarrow{v_{d\,i}}`$* :
<br>
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p \big(n_i\,q_i\,\overrightarrow{E}\cdot\overrightarrow{v_i}\big)\,d\tau`$
<br>
......@@ -604,7 +604,7 @@ I recognize here the law of conservation of charge.
<br>
**$`\large{\mathbf{d\mathcal{P}_{yielded} = \big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau}}`$**
* The *power yielded* by the electromagnetic field *in a volume $`\tau`* is called **$`\large{\text{Joule Effect}}`**,
* The *power yielded* by the electromagnetic field *in a volume $`\tau`* is called **$`\large{\text{Joule Effect}}`$**,
<br>
**$`\large{\displaystyle\mathbf{\mathcal{P}_{yielded} = \iiint_{\tau}\big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau}}`$**
......@@ -620,7 +620,7 @@ I recognize here the law of conservation of charge.
* An electromagnetic field $`\big(\overrightarrow{E},\,\overrightarrow{B}\big)`$ extending through space,
the energy contained in the field is described by
a **volumetric energy density of the electromagnetic field $`\rho_{energy-EM}^{3D}`** defined at each point in space.
a **volumetric energy density of the electromagnetic field $`\rho_{energy-EM}^{3D}`$** defined at each point in space.
<!-------------------
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
......@@ -659,10 +659,7 @@ I recognize here the law of conservation of charge.
\text{Recall that } \vec{u}\dfrac{\partial \vec{u}}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial (\vec{u}\cdot\vec{u})}{\partial t}=\dfrac{1}{2}\,\dfrac{\partial u^2}{\partial t}}}`$
<br>
$`\text{div}\,\big(\overrightarrow{E}\times\overrightarrow{B}\big)`$
$`\quad =-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\dfrac{\mu_0\,\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\,
-\,\dfrac{1}{2}\,\dfrac{\partial B^2}{\partial t}
`$$
$`\quad =-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\dfrac{\mu_0\,\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}\,-\,\dfrac{1}{2}\,\dfrac{\partial B^2}{\partial t}`$
<br>
$`\color{blue}{\scriptsize{\text{Recognizing the Joule effect term }\vec{j}\cdot\vec{E}=\dfrac{d\mathcal{P}_{yielded}}{d\tau}}}`$
$`\color{blue}{\scriptsize{\text{encourages dividing each term of the equation by }\mu_0 }}`$
......@@ -872,7 +869,7 @@ I recognize here the law of conservation of charge.
#### What Is the Poynting Vector?
* The **electromagnetic wave contains energy**
* with *at each point in space* a **volumetric energy density $`\rho_{energy-EM}^{3D}`$$**,
* with *at each point in space* a **volumetric energy density $`\rho_{energy-EM}^{3D}`$**,
- with an *electric component $`\rho_{energy-EM}^{3D}=\dfrac{\epsilon_0\,E^2}{2}`$*,
- with a *magnetic component $`\rho_{energy-EM}^{3D}=\dfrac{B^2}{2 \mu_0}`$*.
* which **moves in vacuum** *at speed $`c`$*.
......@@ -880,7 +877,7 @@ I recognize here the law of conservation of charge.
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
incident *on any surface per second*.
* The **Poynting vector**, defined at each point in space, is *defined by* the relation:
* The **Poynting vector**, defined at each point in space, is *defined by* the relation :
<br>
*$`\large{\mathbf{d\mathcal{P}=\overrightarrow{\Pi}\cdot\overrightarrow{dS}}}`$*
<br>
......@@ -889,17 +886,17 @@ I recognize here the law of conservation of charge.
![Poynting Vector](poynting-vector-1_L1200.jpg)
* Its **expression** in terms of the fields $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$ is:
* Its **expression** in terms of the fields $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$ is :
<br>
**$`\large{\mathbf{\overrightarrow{\Pi}=\dfrac{\overrightarrow{E}\times\overrightarrow{B}}{\mu_0}}}`$**
* *SI Unit*: **$`\mathbf{W\,m^{-2}}`$**
* *SI Unit* : **$`\mathbf{W\,m^{-2}}`$**
! *Note 1*:
!
! The displacement of a charge (SI unit: $`C`$) contained in an elementary volume
! $`d\tau`$ (SI: $`m^3`$) with volume charge density
! $`\rho_{charge}^{3D}`$ (SI: $`C\,m^{-3`$) at a velocity
! $`\rho_{charge}^{3D}`$ (SI: $`C\,m^{-3}`$) at a velocity
! $`\overrightarrow{v_d}`$ (SI: $`m\,s^{-1}`$) :
! * allows defining a volume electric current density vector
! $`\overrightarrow{j}_{current}^{3D}=\rho_{charge}^{3D}\,v_d`$
......@@ -957,23 +954,23 @@ I recognize here the law of conservation of charge.
#### How to Calculate the Power Crossing a Surface of Any Area and Orientation?
* The **power** is simply calculated by the expression:
* The **power** is simply calculated by the expression :
<br>
**$`\displaystyle\mathcal{P}=\iint_S \overrightarrow{\Pi}\cdot\overrightarrow{dS}`$**
* Consider a **monochromatic electromagnetic wave** with a time period $`\mathbf{T_{wave}}`$.
* **$`\mathbf{T_{wave}}`** is the *time period of $`\overrightarrow{E}`$*, the electric field of the wave.
* Consider a **monochromatic electromagnetic wave** with a *time period $`\mathbf{T_{wave}}`$*.
* **$`\mathbf{T_{wave}}`$** is the *time period of $`\overrightarrow{E}`$*, the electric field of the wave.
* Since electrical energy is proportional to $`E^2`$, <br>
the *period of energy variations* of the wave is **$`\mathbf{T_{energy}}`** *$`\mathbf{=\dfrac{T_{wave}}{2}}`$*.
the *period of energy variations* of the wave is **$`\mathbf{T_{energy}}`$** *$`\mathbf{=\dfrac{T_{wave}}{2}}`$*.
* Every **sensor** is characterized by a **response time $`\mathbf{\Delta t_{response}}`$** that quantifies its *speed*.
<br>
Consider a sensor sensitive to electromagnetic energy:
* If *$`\mathbf{\Delta t_{response}\ll T_{energy}}`*, then the sensor is sensitive to the *instantaneous power* :
* If *$`\mathbf{\Delta t_{response}\ll T_{energy}}`$*, then the sensor is sensitive to the *instantaneous power* :
<br>
*$`\displaystyle\large{\mathbf{\mathcal{P}(t)=\iint_S \overrightarrow{\Pi}(t)\cdot\overrightarrow{dS}}}`$*
<br>
* If **$`\mathbf{\Delta t_{response}\gg T_{energy}}`**, then the sensor cannot follow the temporal variations of
* If **$`\mathbf{\Delta t_{response}\gg T_{energy}}`$**, then the sensor cannot follow the temporal variations of
the instantaneous power and only measures the **average value of the power** estimated over $`\Delta t_{response}`$ :
<br>
**$`\displaystyle\large{\mathbf{<\mathcal{P}(t)>\;=\iint_S <\overrightarrow{\Pi}(t)>\cdot\overrightarrow{dS}}}`$**
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment