Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
801cd477
Commit
801cd477
authored
Dec 21, 2025
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.en.md
parent
a6d7d37e
Pipeline
#21624
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
29 additions
and
32 deletions
+29
-32
cheatsheet.en.md
...-vacuum/10.maxwell-equations/20.overview/cheatsheet.en.md
+29
-32
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/10.maxwell-equations/20.overview/cheatsheet.en.md
View file @
801cd477
...
@@ -522,7 +522,7 @@ I recognize here the law of conservation of charge.
...
@@ -522,7 +522,7 @@ I recognize here the law of conservation of charge.
<br>
<br>
*$`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)=0`$*
,
*$`\Big(\overrightarrow{v},\overrightarrow{B},\overrightarrow{dl}\Big)=0`$*
,
!!!!
!!!!
<details
markdown=
1
>
!!!!
<details
markdown=
1
>
!!!!
<summary>
Reminders about the scalar triple product
</summary>
!!!!
<summary>
Reminders about the scalar triple product
</summary>
!!!! The scalar triple product of three vectors $
`\vec{a}, \vec{b}, \vec{c}`
$, denoted $
`(\vec{a}, \vec{b}, \vec{c})`
$
!!!! The scalar triple product of three vectors $
`\vec{a}, \vec{b}, \vec{c}`
$, denoted $
`(\vec{a}, \vec{b}, \vec{c})`
$
...
@@ -549,7 +549,7 @@ I recognize here the law of conservation of charge.
...
@@ -549,7 +549,7 @@ I recognize here the law of conservation of charge.
!!!! </details>
!!!! </details>
!!!!
!!!!
* $`
\L
ongrightarrow
`$ the **work of the Lorentz force** simplifies to
:
* $`
\L
ongrightarrow
`$ the **work of the Lorentz force** simplifies to
:
<br>
<br>
**$`
d
\m
athcal{W}_{Lorentz} = q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{dl}
`$**
**$`
d
\m
athcal{W}_{Lorentz} = q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{dl}
`$**
...
@@ -578,7 +578,7 @@ I recognize here the law of conservation of charge.
...
@@ -578,7 +578,7 @@ I recognize here the law of conservation of charge.
<br>
<br>
**$`
d
\m
athcal{P}_{yielded} = n
\,\b
ig( q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\b
ig)
\,
d
\t
au
`$**
**$`
d
\m
athcal{P}_{yielded} = n
\,\b
ig( q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\b
ig)
\,
d
\t
au
`$**
* Expressed *with the volume charge density $`
\r
ho=n
\,
q
`* :
* Expressed *with the volume charge density $`
\r
ho=n
\,
q
`
$
* :
<br>
<br>
$`
d
\m
athcal{P}_{yielded} =
\b
ig(n
\,
q
\b
ig)
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au =
\r
ho
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au
`$
$`
d
\m
athcal{P}_{yielded} =
\b
ig(n
\,
q
\b
ig)
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au =
\r
ho
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au
`$
...
@@ -590,7 +590,7 @@ I recognize here the law of conservation of charge.
...
@@ -590,7 +590,7 @@ I recognize here the law of conservation of charge.
##### Power yielded in a material with multiple types of charge carriers
##### Power yielded in a material with multiple types of charge carriers
* When a material contains **multiple types of charge carriers $`
q_i
`$**
* When a material contains **multiple types of charge carriers $`
q_i
`$**
in *concentrations $`
n_i
`* and with *drift velocities $`
\o
verrightarrow{v_{d
\,
i}}
`* :
in *concentrations $`
n_i
`* and with *drift velocities $`
\o
verrightarrow{v_{d
\,
i}}
`
$
* :
<br>
<br>
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\b
ig(n_i
\,
q_i
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
\b
ig)
\,
d
\t
au
`$
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\b
ig(n_i
\,
q_i
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
\b
ig)
\,
d
\t
au
`$
<br>
<br>
...
@@ -604,7 +604,7 @@ I recognize here the law of conservation of charge.
...
@@ -604,7 +604,7 @@ I recognize here the law of conservation of charge.
<br>
<br>
**$`
\l
arge{
\m
athbf{d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
**$`
\l
arge{
\m
athbf{d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
* The *power yielded* by the electromagnetic field *in a volume $`
\t
au
`* is called **$`
\l
arge{
\t
ext{Joule Effect}}
`**,
* The *power yielded* by the electromagnetic field *in a volume $`
\t
au
`* is called **$`
\l
arge{
\t
ext{Joule Effect}}
`
$
**,
<br>
<br>
**$`
\l
arge{
\d
isplaystyle
\m
athbf{
\m
athcal{P}_{yielded} =
\i
iint_{
\t
au}
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
**$`
\l
arge{
\d
isplaystyle
\m
athbf{
\m
athcal{P}_{yielded} =
\i
iint_{
\t
au}
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
...
@@ -620,7 +620,7 @@ I recognize here the law of conservation of charge.
...
@@ -620,7 +620,7 @@ I recognize here the law of conservation of charge.
* An electromagnetic field $`
\b
ig(
\o
verrightarrow{E},
\,\o
verrightarrow{B}
\b
ig)
`$ extending through space,
* An electromagnetic field $`
\b
ig(
\o
verrightarrow{E},
\,\o
verrightarrow{B}
\b
ig)
`$ extending through space,
the energy contained in the field is described by
the energy contained in the field is described by
a **volumetric energy density of the electromagnetic field $`
\r
ho_{energy-EM}^{3D}
`** defined at each point in space.
a **volumetric energy density of the electromagnetic field $`
\r
ho_{energy-EM}^{3D}
`
$
** defined at each point in space.
<!-------------------
<!-------------------
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
...
@@ -659,10 +659,7 @@ I recognize here the law of conservation of charge.
...
@@ -659,10 +659,7 @@ I recognize here the law of conservation of charge.
\t
ext{Recall that }
\v
ec{u}
\d
frac{
\p
artial
\v
ec{u}}{
\p
artial t}=
\d
frac{1}{2}
\,\d
frac{
\p
artial (
\v
ec{u}
\c
dot
\v
ec{u})}{
\p
artial t}=
\d
frac{1}{2}
\,\d
frac{
\p
artial u^2}{
\p
artial t}}}
`$
\t
ext{Recall that }
\v
ec{u}
\d
frac{
\p
artial
\v
ec{u}}{
\p
artial t}=
\d
frac{1}{2}
\,\d
frac{
\p
artial (
\v
ec{u}
\c
dot
\v
ec{u})}{
\p
artial t}=
\d
frac{1}{2}
\,\d
frac{
\p
artial u^2}{
\p
artial t}}}
`$
<br>
<br>
$`
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)
`$
$`
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)
`$
$`
\q
uad =-
\,\m
u_0
\,\v
ec{j}
\c
dot
\o
verrightarrow{E}
\,
-
\,\d
frac{
\m
u_0
\,\e
psilon_0}{2}
\,\d
frac{
\p
artial E^2}{
\p
artial t}
$`
\q
uad =-
\,\m
u_0
\,\v
ec{j}
\c
dot
\o
verrightarrow{E}
\,
-
\,\d
frac{
\m
u_0
\,\e
psilon_0}{2}
\,\d
frac{
\p
artial E^2}{
\p
artial t}
\,
-
\,\d
frac{1}{2}
\,\d
frac{
\p
artial B^2}{
\p
artial t}
`$
\,
-
\,\d
frac{1}{2}
\,\d
frac{
\p
artial B^2}{
\p
artial t}
`$$
<br>
<br>
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{Recognizing the Joule effect term }
\v
ec{j}
\c
dot
\v
ec{E}=
\d
frac{d
\m
athcal{P}_{yielded}}{d
\t
au}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{Recognizing the Joule effect term }
\v
ec{j}
\c
dot
\v
ec{E}=
\d
frac{d
\m
athcal{P}_{yielded}}{d
\t
au}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{encourages dividing each term of the equation by }
\m
u_0 }}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{encourages dividing each term of the equation by }
\m
u_0 }}
`$
...
@@ -872,7 +869,7 @@ I recognize here the law of conservation of charge.
...
@@ -872,7 +869,7 @@ I recognize here the law of conservation of charge.
#### What Is the Poynting Vector?
#### What Is the Poynting Vector?
* The **electromagnetic wave contains energy**
* The **electromagnetic wave contains energy**
* with *at each point in space* a **volumetric energy density $`
\r
ho_{energy-EM}^{3D}
`$
$
**,
* with *at each point in space* a **volumetric energy density $`
\r
ho_{energy-EM}^{3D}
`$**,
- with an *electric component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`$*,
- with an *electric component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`$*,
- with a *magnetic component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`$*.
- with a *magnetic component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`$*.
* which **moves in vacuum** *at speed $`
c
`$*.
* which **moves in vacuum** *at speed $`
c
`$*.
...
@@ -880,7 +877,7 @@ I recognize here the law of conservation of charge.
...
@@ -880,7 +877,7 @@ I recognize here the law of conservation of charge.
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
incident *on any surface per second*.
incident *on any surface per second*.
* The **Poynting vector**, defined at each point in space, is *defined by* the relation
:
* The **Poynting vector**, defined at each point in space, is *defined by* the relation
:
<br>
<br>
*$`
\l
arge{
\m
athbf{d
\m
athcal{P}=
\o
verrightarrow{
\P
i}
\c
dot
\o
verrightarrow{dS}}}
`$*
*$`
\l
arge{
\m
athbf{d
\m
athcal{P}=
\o
verrightarrow{
\P
i}
\c
dot
\o
verrightarrow{dS}}}
`$*
<br>
<br>
...
@@ -889,17 +886,17 @@ I recognize here the law of conservation of charge.
...
@@ -889,17 +886,17 @@ I recognize here the law of conservation of charge.


* Its **expression** in terms of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`$ is
:
* Its **expression** in terms of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`$ is
:
<br>
<br>
**$`
\l
arge{
\m
athbf{
\o
verrightarrow{
\P
i}=
\d
frac{
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}}{
\m
u_0}}}
`$**
**$`
\l
arge{
\m
athbf{
\o
verrightarrow{
\P
i}=
\d
frac{
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}}{
\m
u_0}}}
`$**
* *SI Unit*: **$`
\m
athbf{W
\,
m^{-2}}
`$**
* *SI Unit*
: **$`
\m
athbf{W
\,
m^{-2}}
`$**
! *Note 1*:
! *Note 1*:
!
!
! The displacement of a charge (SI unit: $`
C
`$) contained in an elementary volume
! The displacement of a charge (SI unit: $`
C
`$) contained in an elementary volume
! $`
d
\t
au
`$ (SI: $`
m^3
`$) with volume charge density
! $`
d
\t
au
`$ (SI: $`
m^3
`$) with volume charge density
! $`
\r
ho_{charge}^{3D}
`$ (SI: $`
C
\,
m^{-3
`$) at a velocity
! $`
\r
ho_{charge}^{3D}
`$ (SI: $`
C
\,
m^{-3
}
`$) at a velocity
! $`
\o
verrightarrow{v_d}
`$ (SI: $`
m
\,
s^{-1}
`$) :
! $`
\o
verrightarrow{v_d}
`$ (SI: $`
m
\,
s^{-1}
`$) :
! * allows defining a volume electric current density vector
! * allows defining a volume electric current density vector
! $`
\o
verrightarrow{j}_{current}^{3D}=
\r
ho_{charge}^{3D}
\,
v_d
`$
! $`
\o
verrightarrow{j}_{current}^{3D}=
\r
ho_{charge}^{3D}
\,
v_d
`$
...
@@ -957,23 +954,23 @@ I recognize here the law of conservation of charge.
...
@@ -957,23 +954,23 @@ I recognize here the law of conservation of charge.
#### How to Calculate the Power Crossing a Surface of Any Area and Orientation?
#### How to Calculate the Power Crossing a Surface of Any Area and Orientation?
* The **power** is simply calculated by the expression
:
* The **power** is simply calculated by the expression
:
<br>
<br>
**$`
\d
isplaystyle
\m
athcal{P}=
\i
int_S
\o
verrightarrow{
\P
i}
\c
dot
\o
verrightarrow{dS}
`$**
**$`
\d
isplaystyle
\m
athcal{P}=
\i
int_S
\o
verrightarrow{
\P
i}
\c
dot
\o
verrightarrow{dS}
`$**
* Consider a **monochromatic electromagnetic wave** with a
time period $`
\m
athbf{T_{wave}}
`$
.
* Consider a **monochromatic electromagnetic wave** with a
*time period $`
\m
athbf{T_{wave}}
`$*
.
* **$`
\m
athbf{T_{wave}}
`** is the *time period of $`
\o
verrightarrow{E}
`$*, the electric field of the wave.
* **$`
\m
athbf{T_{wave}}
`
$
** is the *time period of $`
\o
verrightarrow{E}
`$*, the electric field of the wave.
* Since electrical energy is proportional to $`
E^2
`$, <br>
* Since electrical energy is proportional to $`
E^2
`$, <br>
the *period of energy variations* of the wave is **$`
\m
athbf{T_{energy}}
`** *$`
\m
athbf{=
\d
frac{T_{wave}}{2}}
`$*.
the *period of energy variations* of the wave is **$`
\m
athbf{T_{energy}}
`
$
** *$`
\m
athbf{=
\d
frac{T_{wave}}{2}}
`$*.
* Every **sensor** is characterized by a **response time $`
\m
athbf{
\D
elta t_{response}}
`$** that quantifies its *speed*.
* Every **sensor** is characterized by a **response time $`
\m
athbf{
\D
elta t_{response}}
`$** that quantifies its *speed*.
<br>
<br>
Consider a sensor sensitive to electromagnetic energy:
Consider a sensor sensitive to electromagnetic energy:
* If *$`
\m
athbf{
\D
elta t_{response}
\l
l T_{energy}}
`*, then the sensor is sensitive to the *instantaneous power* :
* If *$`
\m
athbf{
\D
elta t_{response}
\l
l T_{energy}}
`
$
*, then the sensor is sensitive to the *instantaneous power* :
<br>
<br>
*$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{P}(t)=
\i
int_S
\o
verrightarrow{
\P
i}(t)
\c
dot
\o
verrightarrow{dS}}}
`$*
*$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{P}(t)=
\i
int_S
\o
verrightarrow{
\P
i}(t)
\c
dot
\o
verrightarrow{dS}}}
`$*
<br>
<br>
* If **$`
\m
athbf{
\D
elta t_{response}
\g
g T_{energy}}
`**, then the sensor cannot follow the temporal variations of
* If **$`
\m
athbf{
\D
elta t_{response}
\g
g T_{energy}}
`
$
**, then the sensor cannot follow the temporal variations of
the instantaneous power and only measures the **average value of the power** estimated over $`
\D
elta t_{response}
`$ :
the instantaneous power and only measures the **average value of the power** estimated over $`
\D
elta t_{response}
`$ :
<br>
<br>
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
<
\
mathcal
{
P
}(
t
)
>
\;
=
\i
int_S
<
\
overrightarrow
{\
Pi
}(
t
)
>
\c
dot
\o
verrightarrow{dS}}}
`$**
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
<
\
mathcal
{
P
}(
t
)
>
\;
=
\i
int_S
<
\
overrightarrow
{\
Pi
}(
t
)
>
\c
dot
\o
verrightarrow{dS}}}
`$**
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment