* $`O`$ est le point de l'espace pris comme origine des coordonnées.
* $`(\rho,\varphi,z)`$ sont les coordonnées cylindriques.
<br><br>
et de repère orthonormé associé le *repère cylindrique $`\mathbf{(O, \overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{e_z})}`$*.
### **Distributions cylindriques de charge,<br> invariantes par translation quelconque selon $`z`$**
#### Comment caractériser un distribution de charges à symétrie cylindrique ?
#### De quelles coordonnées dépend $`\dens`$ ?
* La distribution de charges est décrite par une **densité de charge $`\dens=\dens(\rho,\varphi,z)`$**.
_cylindre infini uniformément chargé en volume. Corriger_ $`\vec{e_r}`$ _en_ $`\vec{e_{\rho}}`$.
_Un cylindre infini est, lorsqu'il est chargé uniformément en volume, l'exemple le plus simple de distribution de charge à symétrie cylindrique. Corriger_ $`\vec{e_r}`$ _en_ $`\vec{e_{\rho}}`$.
* *Représentation graphique de $` Q_{int}(\rho)`$* :
<br>
Dans le **même esprit que précédemment**, nous traçons la charge totale dans le volume de Gauss $`Q_{int}(\rho)`$ divisée par la valeur maximale de sa valeur absolue" $`|Q_{int}|_{max}`$.
#### **2 -** Cylindre infini de rayon $`R`$ chargé non uniformément en volume
#### **2 -** Cylindre infini de rayon $`R`$ chargé non uniformément en volume
* L'*objectif d'apprentissage* :
* Dans cet exemple la densité volumique de charge *$`\mathbf{\dens^{3D}}`$ est une fonction de $`\rho`$*, ce qui nécessite de **connaître l'expression de $`\Ltau`$**, l'élément de volume en coordonnées cylindriques et de **réaliser une intégrale triple pour calculer $`Q_{int}`$**, la charge dans le volume de Gauss.
##### Description de $`\dens`$ :
##### Description de $`\dens`$ :
* Prenons l'**exemple** de la distribution :
* Prenons l'**exemple** de la distribution :
**$`\quad\left\{\begin{array}{ll}
**$`\quad\left\{\begin{array}{ll}
\rho\le R \Longrightarrow & \dens^{3D}(\rho) = A\,\rho^2 \\
\rho\le R \Longrightarrow & \dens^{3D}(\rho) = A\,\rho^2 \\
&\text{ avec }A = cste \ne 0 \\
&\text{ avec }A = cste \gt 0 \\
\rho\gt R \Longrightarrow & \dens^{3D}(\rho)= 0
\rho\gt R \Longrightarrow & \dens^{3D}(\rho)= 0
\end{array}\right.`$**
\end{array}\right.`$**
<!--exemple2 à garder : \dens^{3D}(\rho) = \dfrac{A}{\rho^2} -->
<!--exemple2 à garder : \dens^{3D}(\rho) = \dfrac{A}{\rho^2} -->
* La constante étant positive, **$`A\gt 0`$** , nous nous limitons dans cet exemple à des *charges positives*.
_Variation de la composante_ $`E_{\rho}`$ _du champ électrique en fonction de_ $`\rho`$.
<br>
<br>
-----------------------
-----------------------
#### **3 -** Cylindre infini creux de rayons intérieur $`R_{int}`$ et extérieur $`R_{ext}`$
* L'*objectif d'apprentissage* :
* Dans cet exemple, il y a **plus de 2 sous-espaces à prendre en compte** pour finaliser le calcul du champ électrique en tout point de l'espace.
##### Description de $`\dens`$ :
* Reprenons l'**exemple du profil précédent** de densité volumique de charge $`\dens^{3D}(\rho)=A\,\rho^2`$, *mais limité au volume d'un cylindre creux* de rayons intérieur $`R_{int}`$ et extérieur $`R_{ext}`$ :
* Le point $`M`$ est situé à l'extérieur du cylindre.
<br>
$`\Longrightarrow`$ le **volume de Gauss $`\Ltau_G`$** *intercepte les sous-espaces* $`\mathscr{E}_{int}`$, $`\mathscr{E}_{mil}`$* et $`\mathscr{E}_{ext}`$*.
On retrouve naturellement les résultats précédents.
<br>
-----------------------------
#### **4 -** Cylindre infini de rayon $`R`$ chargé uniformément en surface
* L'*objectif d'apprentissage* :
* Dans cet exemple, la distribution réelle de charge est modélisée par une **densité superficielle de charge $`\mathbf{\dens^{2D}}`$**.
* Faire le lien avec le cas précédent, étudier la **transition entre** :
\- une **distribution réelle 3D** de charge *dans un cylindre creux de faible épaisseur $`e`$*$`=R_{ext}-R_{int}`$.
\- sa **modélisation 2D** par une distribution $`\dens^{2D}`$ *lorsque l'épaisseur $`e`$ est négligée*.
* Montrer, si besoin était, que les **relations de continuité de $`\mathbf{\overrightarrow{E}}`$** à la traversée d'une surface chargée est la même que la surface chargée soit cylindrique ou plane (faire afficher les trois types de distributions en parallèle). Elles sont **les mêmes à la traversée de toute surface**, *plane ou courbe*.
_schéma simplifié du profil vu en coupe à venir_
##### Description de $`\dens`$ :
***$`\quad\left\{\begin{array}{l}
\rho\lt R \Longrightarrow \dens^{3D}(\rho) = 0 \\
\rho = R \Longrightarrow \dens^{2D}(\rho)=\dens^{2D}_0=cst \ne 0 \\
\rho\gt R \Longrightarrow \dens^{3D}(\rho) = 0
\end{array}\right.`$**
<!-------------
* Nombre de sous-espaces à prendre en compte : 2
* sous-espace $`\mathscr{E}_{int}`$, caractérisé par $`\dens=\dens^{3D}_0`$ et tel que $`\rho\le R`$.
* sous-espace $`\mathscr{E}_{ext}`$, caractérisé par $`\dens=0`$ et tel que $`\rho \gt R`$
à développer et terminer
montrer discontinuité de $`\overrightarrow{E}`$ à la traversée d'une surface chargée, due
au passage 3D vers idéalisation 2D : cela aura déjà été vu juste avant dans distribution de charge a symétrie plane, faire le lien.
Cette discontinuité de $`\overrightarrow{E}`$ en $`\rho=R`$ fait que le champ n'est pas défini en $`\rho=R`$ dans cette modélisation, dans cette idéalisation 2D, ce qui justifie de n'avoir considéré que les deux sous-espaces $`\mathscr{E}_{int}`$ et $`\mathscr{E}_{ext}`$.
------>
à terminer
_figure de l'amplitude du champ électrique en fonction de_ $`\rho`$ _à venir_