Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
80ba9696
Commit
80ba9696
authored
Sep 18, 2023
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
1c4532e5
Pipeline
#16455
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
50 additions
and
0 deletions
+50
-0
cheatsheet.fr.md
...-of-differential-equations/40.parallel-1/cheatsheet.fr.md
+50
-0
No files found.
12.temporary_ins/04-math-tools/70.systems-of-differential-equations/40.parallel-1/cheatsheet.fr.md
View file @
80ba9696
...
...
@@ -50,6 +50,56 @@ valeurs et vecteurs propres
------------------------------
#### Puissance entiète d'une matrice carré
Soit $
`M`
$ une matrice réelle carré de dimension $
`m\times m`
$.
Par définition : $
`\forall k\in \mathbb{N}^{\*}\,,\,`
$
**$`\mathbf{M^k = \underbrace{M \times M \times \cdots \times M}_{\color{blue}{\text{k fois}}}`$**
##### $`M`$ est diagonale`$
*$`\mathbf{M^2}`$*
$
`\; = M\times M`
$
$
`\quad \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\;\times\;\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`
$
*$`\mathbf{\quad \begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}}`$*
Et par récurrence,
$
`\forall k \in \mathbb{N}^{\*}\setminus \{1}`
$
**$`\mathbf{M^k}`$**
$
`\; = M^{k-1}\times M`
$
$
`\quad = \begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\;\times\; \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}`
$
**
$
`\mathbf{\quad = \begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}}`
$
##### $`M`$ est non diagonale, mais diagonalisable`$
*$`\mathbf{M^2}`$*
$
`\; = M\times M`
$
$
`\quad P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\;
\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`
$
$
`\quad P\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}^{\,2}\,\underbrace{P^{-1}`
$
*$`\mathbf{\quad P\,\begin{pmatrix} \lambda_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^2\\ \end{pmatrix}\,\underbrace{P^{-1}}`$*
Et par récurrence :
$
`\forall k \in \mathbb{N}^{\*}\setminus \{1}`
$
**$`\mathbf{M^k}`$**
$
`\; = M^{k-1}\times M`
$
$
`\quad = P\,\begin{pmatrix} \lambda_1^{k-1} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^{k-1} \\ \end{pmatrix}\,\underbrace{P^{-1}\;\times\; P}_{\color{blue}{= I_m}}\,\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m\\ \end{pmatrix}\,P^{-1}`
$
**$`\mathbf{\quad P\,\begin{pmatrix} \lambda_1^k & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \lambda_m^k\\ \end{pmatrix}\,\underbrace{P^{-1}}`$**
<br>
------------------------------
#### Fonction exponentielle de matrice
écriture d'éléments bruts, les compléments, liens et cours associé sont à faire après.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment