Commit 8695e7cf authored by Claude Meny's avatar Claude Meny

Update cheatsheet.en.md

parent efe5068e
Pipeline #21622 canceled with stage
......@@ -555,10 +555,10 @@ I recognize here the law of conservation of charge.
! *Note:*
!
! The *magnetic force $`\overrightarrow{F}_{magn.}=q\,\overrightarrow{v}\times\overrightarrow{B}`*,
! The *magnetic force $`\overrightarrow{F}_{magn.}=q\,\overrightarrow{v}\times\overrightarrow{B}`$*,
! by nature perpendicular to the velocity vector $`\overrightarrow{v}`$ and thus to the elementary displacement
! vector $`\overrightarrow{dl}=\overrightarrow{v}\,dt`$ at every point on the particle's trajectory
! with charge $`q`*, *does no work*:
! with charge $`q`$*, *does no work*:
!
! $`\mathbf{d\mathcal{W}_{magn} = \overrightarrow{F}_{magn}\cdot \overrightarrow{dl}=0}`$
!
......@@ -568,45 +568,45 @@ I recognize here the law of conservation of charge.
* The **elementary power yielded by the field** to this particle is written as:
<br>
**$`\mathbf{\mathcal{P}_{yielded} = \dfrac{d\mathcal{W}_{Lorentz}}{dt} = q\,\overrightarrow{E}\cdot\overrightarrow{v}}`**
**$`\mathbf{\mathcal{P}_{yielded} = \dfrac{d\mathcal{W}_{Lorentz}}{dt} = q\,\overrightarrow{E}\cdot\overrightarrow{v}}`$**
##### Power yielded in a material with a single type of charge carrier
* If the **material medium** contains *$`n`* identical charge carriers of charge $`q`* per unit volume*,
* If the **material medium** contains *$`n`$ identical charge carriers of charge $`q`$ per unit volume*,
then an elementary volume $`d\tau`$ contains $`n\,\tau`$ charge carriers
and the **elementary power yielded** by the electromagnetic field is written as:
and the **elementary power yielded** by the electromagnetic field is written as :
<br>
**$`d\mathcal{P}_{yielded} = n\,\big( q\,\overrightarrow{E}\cdot\overrightarrow{v}\big)\,d\tau`$**
**$`d\mathcal{P}_{yielded} = n\,\big( q\,\overrightarrow{E}\cdot\overrightarrow{v}\big)\,d\tau`$**
* Expressed *with the volume charge density $`\rho=n\,q`*:
* Expressed *with the volume charge density $`\rho=n\,q`* :
<br>
$`d\mathcal{P}_{yielded} = \big(n\, q\big)\,\overrightarrow{E}\cdot\overrightarrow{v}\,d\tau = \rho\,\overrightarrow{E}\cdot\overrightarrow{v}\,d\tau`$
$`d\mathcal{P}_{yielded} = \big(n\, q\big)\,\overrightarrow{E}\cdot\overrightarrow{v}\,d\tau = \rho\,\overrightarrow{E}\cdot\overrightarrow{v}\,d\tau`$
* Expressed *with the volume current density vector $`\overrightarrow{j}=\rho\,\overrightarrow{v}`*, noting that
$`\overrightarrow{E}\cdot\overrightarrow{v}=\overrightarrow{v}\cdot\overrightarrow{E}`$:
* Expressed *with the volume current density vector $`\overrightarrow{j}=\rho\,\overrightarrow{v}`$*, noting that
$`\overrightarrow{E}\cdot\overrightarrow{v}=\overrightarrow{v}\cdot\overrightarrow{E}`$ :
<br>
**$`d\mathcal{P}_{yielded} = \big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau`$**
**$`d\mathcal{P}_{yielded} = \big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau`$**
##### Power yielded in a material with multiple types of charge carriers
* When a material contains **multiple types of charge carriers $`q_i`**
in *concentrations $`n_i`* and with *drift velocities $`\overrightarrow{v_{d\,i}}`*:
* When a material contains **multiple types of charge carriers $`q_i`$**
in *concentrations $`n_i`* and with *drift velocities $`\overrightarrow{v_{d\,i}}`* :
<br>
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p \big(n_i\,q_i\,\overrightarrow{E}\cdot\overrightarrow{v_i}\big)\,d\tau`$
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p \big(n_i\,q_i\,\overrightarrow{E}\cdot\overrightarrow{v_i}\big)\,d\tau`$
<br>
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p \rho_i\,d\tau\,\overrightarrow{E}\cdot\overrightarrow{v_i}`$
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p \rho_i\,d\tau\,\overrightarrow{E}\cdot\overrightarrow{v_i}`$
<br>
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p\overrightarrow{j_i}\cdot\overrightarrow{E}\,d\tau`$
$`\displaystyle d\mathcal{P}_{yielded} = \sum_{i=1}^p\overrightarrow{j_i}\cdot\overrightarrow{E}\,d\tau`$
<br>
*$`d\mathcal{P}_{yielded} = \overrightarrow{j}_{total}\cdot\overrightarrow{E}\,d\tau`$*
*$`d\mathcal{P}_{yielded} = \overrightarrow{j}_{total}\cdot\overrightarrow{E}\,d\tau`$*
* By simply setting *$`\overrightarrow{j}_{total}=\overrightarrow{j}`*:
* By simply setting *$`\overrightarrow{j}_{total}=\overrightarrow{j}`* :
<br>
**$`\large{\mathbf{d\mathcal{P}_{yielded} = \big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau}}`$**
**$`\large{\mathbf{d\mathcal{P}_{yielded} = \big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau}}`$**
* The *power yielded* by the electromagnetic field *in a volume $`\tau`* is called **$`\large{\text{Joule Effect}}`**,
* The *power yielded* by the electromagnetic field *in a volume $`\tau`* is called **$`\large{\text{Joule Effect}}`**,
<br>
**$`\large{\displaystyle\mathbf{\mathcal{P}_{yielded} = \iiint_{\tau}\big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau}}`$**
**$`\large{\displaystyle\mathbf{\mathcal{P}_{yielded} = \iiint_{\tau}\big(\overrightarrow{j}\cdot\overrightarrow{E}\big)\,d\tau}}`$**
<br>
......@@ -627,20 +627,20 @@ I recognize here the law of conservation of charge.
##### Is the expression of the volumetric energy density of the electromagnetic field contained in Maxwell's equations?
--------------------->
* Start with the mathematical identity:
* Start with the mathematical identity :
<br>
$`\mathbf{\text{div}\,\big(\overrightarrow{U}\times\overrightarrow{V}\big)=
\overrightarrow{V}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{U}\big)\,-\,\overrightarrow{U}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{V}\big)}`$
\overrightarrow{V}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{U}\big)\,-\,\overrightarrow{U}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{V}\big)}`$
<br>
and apply it to the electromagnetic field $`\big(\overrightarrow{E},\,\overrightarrow{B}\big)`$ by setting $`\overrightarrow{U}=\overrightarrow{E}`$
and $`\overrightarrow{V}=\overrightarrow{B}`$
and $`\overrightarrow{V}=\overrightarrow{B}`$
<br>
**$`\mathbf{\text{div}\,\big(\overrightarrow{E}\times\overrightarrow{B}\big)=\overrightarrow{B}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{E}\big)\,-\,\overrightarrow{E}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{B}\big)}`$**
**$`\mathbf{\text{div}\,\big(\overrightarrow{E}\times\overrightarrow{B}\big)=\overrightarrow{B}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{E}\big)\,-\,\overrightarrow{E}\cdot\big(\overrightarrow{\text{curl}}\,\overrightarrow{B}\big)}`$**
<br>
$`\color{blue}{\scriptsize{
\text{Identify the terms } \overrightarrow{\text{curl}}\,\overrightarrow{E} \text{ and } \overrightarrow{\text{curl}}\,\overrightarrow{B}}}`$
$`\color{blue}{\scriptsize{\text{ with their causes, respectively}}}`$
$`\color{blue}{\scriptsize{\text{the Maxwell-Faraday and Maxwell-Ampère equations}}}`$
$`\color{blue}{\scriptsize{\text{the Maxwell-Faraday and Maxwell-Ampère equations}}}`$
<br>
$`\begin{align}\text{div}\,\big(\overrightarrow{E}\times\overrightarrow{B}\big)
=&\overrightarrow{B}\cdot
......@@ -648,7 +648,7 @@ I recognize here the law of conservation of charge.
\underbrace{\overrightarrow{\text{curl}}\,\overrightarrow{E}}
_{\color{blue}{=-\frac{\partial \vec{B}}{\partial t}}}\big)\,\\
&\quad-\,\overrightarrow{E}\cdot\big(\underbrace{\overrightarrow{\text{curl}}\,\overrightarrow{B}}_{\color{blue}{=\mu_0\,\vec{j}+\mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t}
}}\big)\end{align}`$
}}\big)\end{align}`$
<br>
$`\text{div}\,\big(\overrightarrow{E}\times\overrightarrow{B}\big)`$
$`\quad=-\,\mu_0\,\vec{j}\cdot\overrightarrow{E}\,-\,\mu_0\,\epsilon_0\dfrac{\partial \vec{E}}{\partial t}\cdot\overrightarrow{E}
......@@ -677,9 +677,9 @@ I recognize here the law of conservation of charge.
\,-\,\dfrac{\epsilon_0}{2}\,\dfrac{\partial E^2}{\partial t}
\,
-\,\dfrac{1}{2\,\mu_0}\,\dfrac{\partial B^2}{\partial t}
`$$
`$
<br>
$`\color{blue}{\scriptsize{\text{which you can rewrite:}}}`$
$`\color{blue}{\scriptsize{\text{which you can rewrite:}}}`$
<br>
**$`\mathbf{
\text{div}\,\left(\dfrac{\overrightarrow{E}\times\overrightarrow{B}}{\mu_0}\right)}`$
......@@ -689,15 +689,15 @@ I recognize here the law of conservation of charge.
\right)
}`$**
* Thus appears the **volumetric energy density of the electromagnetic field** with *SI unit: $`J\,m^{-3}`*:
* Thus appears the **volumetric energy density of the electromagnetic field** with *SI unit: $`J\,m^{-3}`$* :
<br>
**$`\large{\mathbf{\rho_{energy-EM}^{3D}=\dfrac{\epsilon_0\,E^2}{2}+\dfrac{B^2}{2 \mu_0}}}`$**
**$`\large{\mathbf{\rho_{energy-EM}^{3D}=\dfrac{\epsilon_0\,E^2}{2}+\dfrac{B^2}{2 \mu_0}}}`$**
* This volumetric density $`\rho_{energy-EM}^{3D}`$ *has two components*:
* an *electric component* **$`\;\rho_{elec}^{3D}=\dfrac{\epsilon_0\,E^2}{2}`$**
* a *magnetic component* **$`\;\rho_{mag}^{3D}=\dfrac{B^2}{2 \mu_0}`$**.
* The electromagnetic energy $`\mathcal{E}_{EM}`$ contained **in a volume $`\tau`** is expressed as:
* The electromagnetic energy $`\mathcal{E}_{EM}`$ contained **in a volume $`\tau`$** is expressed as :
<br>
**$`\displaystyle\large{\mathbf{\mathcal{E}_{EM}=\iiint_{\tau} \left(\dfrac{\epsilon_0\,E^2}{2}+\dfrac{B^2}{2 \mu_0}\right) d\tau}}`$**
......@@ -711,38 +711,38 @@ I recognize here the law of conservation of charge.
##### Wave Equation
* For a *vector field $`\overrightarrow{U}(\overrightarrow{r},t)`*, the **d'Alembert wave equation** is written as:
* For a *vector field $`\overrightarrow{U}(\overrightarrow{r},t)`*, the **d'Alembert wave equation** is written as :
<br>
**$`\Delta \overrightarrow{U} - \dfrac{1}{v^2} \; \dfrac{\partial^2 \;\overrightarrow{U}}{\partial t^2}=0`$**
**$`\Delta \overrightarrow{U} - \dfrac{1}{v^2} \; \dfrac{\partial^2 \;\overrightarrow{U}}{\partial t^2}=0`$**
* The expression of the *vector Laplacian operator $`\Delta`* in terms of the $`\text{grad}`$, $`\text{div}`$, and $`\text{curl}`$ operators is:
* The expression of the *vector Laplacian operator $`\Delta`* in terms of the $`\text{grad}`$, $`\text{div}`$, and $`\text{curl}`$ operators is :
<br>
*$`\Delta = \overrightarrow{\text{grad}} \left(\text{div}\right) - \overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}}\right)`$*
*$`\Delta = \overrightarrow{\text{grad}} \left(\text{div}\right) - \overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}}\right)`$*
* The **idea** is to *calculate for each of the fields $`\overrightarrow{E}`$ and $`\overrightarrow{B}`*
the expression of *its Laplacian*, to see if it can be identified with the wave equation.
* The **idea** is to *calculate for each of the fields $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$*
the expression of *its Laplacian*, to see if it can be identified with the wave equation.
##### Study of the $`\overrightarrow{E}`$ Component of the Electromagnetic Field
* To **establish the expression $`\Delta \overrightarrow{E}`**, I calculate
* To **establish the expression $`\Delta \overrightarrow{E}`$**, I calculate
$`\overrightarrow{\text{curl}}\left(\overrightarrow{\text{curl}} \overrightarrow{E}\right)`$ and then
$`\overrightarrow{\text{grad}} \left(\text{div} \overrightarrow{E}\right)`* from Maxwell's equations.
$`\overrightarrow{\text{grad}} \left(\text{div} \overrightarrow{E}\right)`$* from Maxwell's equations.
* $`\overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}} \overrightarrow{E}\right) =
\overrightarrow{\text{curl}} \left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right)`$
\overrightarrow{\text{curl}} \left(-\dfrac{\partial \overrightarrow{B}}{\partial t}\right)`$
<br>
In classical physics, space and time are decoupled. The spatial coordinates
and the time coordinate are independent. The order of differentiation or integration between
spatial coordinates and the time coordinate does not matter, so:
spatial coordinates and the time coordinate does not matter, so :
<br>
$`\overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}} \overrightarrow{E}\right) =
-\dfrac{\partial}{\partial t} \left(\overrightarrow{\text{curl}} \overrightarrow{B}\right)`$
-\dfrac{\partial}{\partial t} \left(\overrightarrow{\text{curl}} \overrightarrow{B}\right)`$
<br><br>
$`\overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}} \overrightarrow{E}\right) =
-\dfrac{\partial}{\partial t} \left(\mu_0 \overrightarrow{j} + \mu_0 \epsilon_0 \dfrac{\partial \overrightarrow{E}}{\partial t}\right)`$
-\dfrac{\partial}{\partial t} \left(\mu_0 \overrightarrow{j} + \mu_0 \epsilon_0 \dfrac{\partial \overrightarrow{E}}{\partial t}\right)`$
<br><br>
*$`\overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}} \overrightarrow{E}\right) =
-\mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t} - \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$*
-\mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t} - \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$*
<br><br>
* *$`\overrightarrow{\text{grad}} \left(\text{div} \overrightarrow{E}\right) =
......@@ -751,37 +751,37 @@ I recognize here the law of conservation of charge.
* Reconstructing
$`\Delta \overrightarrow{E} = \overrightarrow{\text{grad}} \left(\text{div} \overrightarrow{E}\right) -
\overrightarrow{\text{curl}} \left(\overrightarrow{\text{curl}} \overrightarrow{E}\right)`$
gives:
gives :
<br>
$`\Delta \overrightarrow{E} = \overrightarrow{\text{grad}} \left(\dfrac{\rho}{\epsilon_0}\right) +
\mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t} + \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$
\mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t} + \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2}`$
<br>
which, by identifying with the first term of the wave equation, gives:
which, by identifying with the first term of the wave equation, gives :
**$`\mathbf{\Delta \overrightarrow{E} - \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} =
\dfrac{1}{\epsilon_0} \overrightarrow{\text{grad}} \left(\rho\right) + \mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t}}`$**
\dfrac{1}{\epsilon_0} \overrightarrow{\text{grad}} \left(\rho\right) + \mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t}}`$**
<br>
*(wave equation for the electric field)*
##### Study of the $`\overrightarrow{B}`$ Component of the Electromagnetic Field
* A *similar study* (proposed as a self-test in the advanced section) would lead me
to the propagation equation for the magnetic field $`\overrightarrow{B}`$:
to the propagation equation for the magnetic field $`\overrightarrow{B}`$ :
<br>
**$`\mathbf{\Delta \overrightarrow{B} - \epsilon_0 \mu_0 \dfrac{\partial^2 \overrightarrow{B}}{\partial t^2} =
-\mu_0 \overrightarrow{\text{curl}} \overrightarrow{j}}`$**
-\mu_0 \overrightarrow{\text{curl}} \overrightarrow{j}}`$**
<br>
*(wave equation for the magnetic field)*
##### Propagation of an Electromagnetic Wave in Matter
* The study starts from Maxwell's equations and the two equations:
* The study starts from Maxwell's equations and the two equations :
<br>
$`\Delta \overrightarrow{E} - \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} =
\dfrac{1}{\epsilon_0} \overrightarrow{\text{grad}} \left(\rho\right) + \mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t}`$
\dfrac{1}{\epsilon_0} \overrightarrow{\text{grad}} \left(\rho\right) + \mu_0 \dfrac{\partial \overrightarrow{j}}{\partial t}`$
<br>
$`\Delta \overrightarrow{B} - \epsilon_0 \mu_0 \dfrac{\partial^2 \overrightarrow{B}}{\partial t^2} =
-\mu_0 \overrightarrow{\text{curl}} \overrightarrow{j}`$
-\mu_0 \overrightarrow{\text{curl}} \overrightarrow{j}`$
<br>
and is the subject of an entire **development in a later chapter**.
......@@ -789,18 +789,18 @@ I recognize here the law of conservation of charge.
* *Empty space* is characterized by an absence of charges, whether fixed or moving.
The volume charge density $`\rho_{\text{vacuum}}`$ as well as the volume current density vector
$`\overrightarrow{j}_{\text{vacuum}}`$ have a value of zero throughout empty space,
$`\overrightarrow{j}_{\text{vacuum}}`$ have a value of zero throughout empty space,
<br>
*$`\rho_{\text{vacuum}}=0 \quad \text{and} \quad \overrightarrow{j}_{\text{vacuum}}=\overrightarrow{0}`$*.
*$`\rho_{\text{vacuum}}=0 \quad \text{and} \quad \overrightarrow{j}_{\text{vacuum}}=\overrightarrow{0}`$*.
* Therefore, the propagation of the electromagnetic wave in vacuum is expressed in the form
of a system of **two d'Alembert equations**:
of a system of **two d'Alembert equations** :
<br>
**$`\large{\boldsymbol{\mathbf{\Delta \overrightarrow{E} - \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{E}}{\partial t^2} = \overrightarrow{0}}}}`$**
<br>
**$`\large{\boldsymbol{\mathbf{\Delta \overrightarrow{B} - \mu_0 \epsilon_0 \dfrac{\partial^2 \overrightarrow{B}}{\partial t^2} = \overrightarrow{0}}}}`$**
!!!! *Attention*:
!!!! *Attention* :
!!!!
!!!! *Maxwell's equations imply the propagation of the electromagnetic field*.
!!!!
......@@ -821,13 +821,13 @@ I recognize here the law of conservation of charge.
##### Speed of Light in Vacuum
* Identifying the propagation equations of the fields $`\overrightarrow{E}`$ and $`\overrightarrow{B}`$
with the d'Alembert wave equation shows that *the electromagnetic field propagates at the speed*
with the d'Alembert wave equation shows that *the electromagnetic field propagates at the speed*
<br>
*$`\large{\mathscr{v}=\dfrac{1}{\sqrt{\epsilon_0 \mu_0}}}`$*
*$`\large{\mathscr{v}=\dfrac{1}{\sqrt{\epsilon_0 \mu_0}}}`$*
* The *speed of light in vacuum*, denoted *$`\mathbf{c}`$*, is a **fundamental constant** of the universe, and its exact value is:
* The *speed of light in vacuum*, denoted *$`\mathbf{c}`$*, is a **fundamental constant** of the universe, and its exact value is :
<br>
*$`\large{c=299,792,458 \, \text{m} \, \text{s}^{-1} \approx 3 \times 10^8 \, \text{m} \, \text{s}^{-1}}`$*
*$`\large{c=299,792,458 \, \text{m} \, \text{s}^{-1} \approx 3 \times 10^8 \, \text{m} \, \text{s}^{-1}}`$*
!! *For further reading*:
!!
......@@ -872,9 +872,9 @@ I recognize here the law of conservation of charge.
#### What Is the Poynting Vector?
* The **electromagnetic wave contains energy**
* with *at each point in space* a **volumetric energy density $`\rho_{energy-EM}^{3D}`**,
- with an *electric component $`\rho_{energy-EM}^{3D}=\dfrac{\epsilon_0\,E^2}{2}`*,
- with a *magnetic component $`\rho_{energy-EM}^{3D}=\dfrac{B^2}{2 \mu_0}`*.
* with *at each point in space* a **volumetric energy density $`\rho_{energy-EM}^{3D}`$$**,
- with an *electric component $`\rho_{energy-EM}^{3D}=\dfrac{\epsilon_0\,E^2}{2}`$*,
- with a *magnetic component $`\rho_{energy-EM}^{3D}=\dfrac{B^2}{2 \mu_0}`$*.
* which **moves in vacuum** *at speed $`c`$*.
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
......@@ -900,7 +900,7 @@ I recognize here the law of conservation of charge.
! The displacement of a charge (SI unit: $`C`$) contained in an elementary volume
! $`d\tau`$ (SI: $`m^3`$) with volume charge density
! $`\rho_{charge}^{3D}`$ (SI: $`C\,m^{-3`$) at a velocity
! $`\overrightarrow{v_d}`$ (SI: $`m\,s^{-1}`$):
! $`\overrightarrow{v_d}`$ (SI: $`m\,s^{-1}`$) :
! * allows defining a volume electric current density vector
! $`\overrightarrow{j}_{current}^{3D}=\rho_{charge}^{3D}\,v_d`$
! (SI: $`A\,m^{-2}`$),
......@@ -966,24 +966,24 @@ I recognize here the law of conservation of charge.
* Since electrical energy is proportional to $`E^2`$, <br>
the *period of energy variations* of the wave is **$`\mathbf{T_{energy}}`** *$`\mathbf{=\dfrac{T_{wave}}{2}}`$*.
* Every **sensor** is characterized by a **response time $`\mathbf{\Delta t_{response}}`** that quantifies its *speed*.
* Every **sensor** is characterized by a **response time $`\mathbf{\Delta t_{response}}`$** that quantifies its *speed*.
<br>
Consider a sensor sensitive to electromagnetic energy:
* If *$`\mathbf{\Delta t_{response}\ll T_{energy}}`*, then the sensor is sensitive to the *instantaneous power*:
* If *$`\mathbf{\Delta t_{response}\ll T_{energy}}`*, then the sensor is sensitive to the *instantaneous power* :
<br>
*$`\displaystyle\large{\mathbf{\mathcal{P}(t)=\iint_S \overrightarrow{\Pi}(t)\cdot\overrightarrow{dS}}}`$*
*$`\displaystyle\large{\mathbf{\mathcal{P}(t)=\iint_S \overrightarrow{\Pi}(t)\cdot\overrightarrow{dS}}}`$*
<br>
* If **$`\mathbf{\Delta t_{response}\gg T_{energy}}`**, then the sensor cannot follow the temporal variations of
the instantaneous power and only measures the **average value of the power** estimated over $`\Delta t_{response}`$:
the instantaneous power and only measures the **average value of the power** estimated over $`\Delta t_{response}`$ :
<br>
**$`\displaystyle\large{\mathbf{<\mathcal{P}(t)>\;=\iint_S <\overrightarrow{\Pi}(t)>\cdot\overrightarrow{dS}}}`$**
**$`\displaystyle\large{\mathbf{<\mathcal{P}(t)>\;=\iint_S <\overrightarrow{\Pi}(t)>\cdot\overrightarrow{dS}}}`$**
!!! *Example*:
!!!
!!! The *visible domain* corresponds to:
!!! * a *wavelength* in vacuum on the order of 500 nanometers: *$`\mathbf{\lambda = 5\cdot 10^{-7}\,m}`$* <br>
!!! <br>
!!! This corresponds to a time period of the electric field $`T_{wave}`$ of: <br>
!!! This corresponds to a time period of the electric field $`T_{wave}`$ of : <br>
!!! $`T_{wave}=\dfrac{\lambda}{c}=\dfrac{5\cdot 10^{-7}}{3\cdot 10^{8}} = 1.7\times 10^{-15}\,s`$, <br>
!!! or <br>
!!! $`T_{energy}=8.5\times 10^{-16}\,s`$ <br>
......@@ -1006,15 +1006,15 @@ For transverse and classical resources, parallel links
#### What Is the Electromagnetic Spectrum?
* **Maxwell** hypothesized that *visible light*, whose speed had just been measured from
astronomical observations of the motion of Jupiter's satellites, *is an electromagnetic wave*.
astronomical observations of the motion of Jupiter's satellites, *is an electromagnetic wave*.
<br>
$`\Longrightarrow`$ Light is only a tiny part of electromagnetic waves.
$`\Longrightarrow`$ Light is only a tiny part of electromagnetic waves.
<br>
$`\Longrightarrow`$ A *whole new world of "lights"* is revealed, called the **electromagnetic spectrum**.
$`\Longrightarrow`$ A *whole new world of "lights"* is revealed, called the **electromagnetic spectrum**.
![Electromagnetic Spectrum](astro-electromagnetic-spectrum-N4_1_fr_L1200.jpg)
![Electromagnetic Spectrum](astro-electromagnetic-spectrum-N4_1_en_L1200.jpg)
* In particular, **knowledge of the universe** resulted *before Maxwell* from the sole observation of the *visible domain*,
* In particular, **knowledge of the universe** resulted *before Maxwell* from the sole observation of the *visible domain*,
![Visible Sky](ciel-visible-bsp_L1200.jpg)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment