Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
8695e7cf
Commit
8695e7cf
authored
Dec 21, 2025
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.en.md
parent
efe5068e
Pipeline
#21622
canceled with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
77 deletions
+77
-77
cheatsheet.en.md
...-vacuum/10.maxwell-equations/20.overview/cheatsheet.en.md
+77
-77
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/10.maxwell-equations/20.overview/cheatsheet.en.md
View file @
8695e7cf
...
@@ -555,10 +555,10 @@ I recognize here the law of conservation of charge.
...
@@ -555,10 +555,10 @@ I recognize here the law of conservation of charge.
! *Note:*
! *Note:*
!
!
! The *magnetic force $`
\o
verrightarrow{F}_{magn.}=q
\,\o
verrightarrow{v}
\t
imes
\o
verrightarrow{B}
`*,
! The *magnetic force $`
\o
verrightarrow{F}_{magn.}=q
\,\o
verrightarrow{v}
\t
imes
\o
verrightarrow{B}
`
$
*,
! by nature perpendicular to the velocity vector $`
\o
verrightarrow{v}
`$ and thus to the elementary displacement
! by nature perpendicular to the velocity vector $`
\o
verrightarrow{v}
`$ and thus to the elementary displacement
! vector $`
\o
verrightarrow{dl}=
\o
verrightarrow{v}
\,
dt
`$ at every point on the particle's trajectory
! vector $`
\o
verrightarrow{dl}=
\o
verrightarrow{v}
\,
dt
`$ at every point on the particle's trajectory
! with charge $`
q
`*, *does no work*:
! with charge $`
q
`
$
*, *does no work*:
!
!
! $`
\m
athbf{d
\m
athcal{W}_{magn} =
\o
verrightarrow{F}_{magn}
\c
dot
\o
verrightarrow{dl}=0}
`$
! $`
\m
athbf{d
\m
athcal{W}_{magn} =
\o
verrightarrow{F}_{magn}
\c
dot
\o
verrightarrow{dl}=0}
`$
!
!
...
@@ -568,45 +568,45 @@ I recognize here the law of conservation of charge.
...
@@ -568,45 +568,45 @@ I recognize here the law of conservation of charge.
* The **elementary power yielded by the field** to this particle is written as:
* The **elementary power yielded by the field** to this particle is written as:
<br>
<br>
**$`
\m
athbf{
\m
athcal{P}_{yielded} =
\d
frac{d
\m
athcal{W}_{Lorentz}}{dt} = q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}}
`**
**$`
\m
athbf{
\m
athcal{P}_{yielded} =
\d
frac{d
\m
athcal{W}_{Lorentz}}{dt} = q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}}
`
$
**
##### Power yielded in a material with a single type of charge carrier
##### Power yielded in a material with a single type of charge carrier
* If the **material medium** contains *$`
n
`
* identical charge carriers of charge $`
q
`*
per unit volume*,
* If the **material medium** contains *$`
n
`
$ identical charge carriers of charge $`
q
`$
per unit volume*,
then an elementary volume $`
d
\t
au
`$ contains $`
n
\,\t
au
`$ charge carriers
then an elementary volume $`
d
\t
au
`$ contains $`
n
\,\t
au
`$ charge carriers
and the **elementary power yielded** by the electromagnetic field is written as
:
and the **elementary power yielded** by the electromagnetic field is written as
:
<br>
<br>
**$`
d
\m
athcal{P}_{yielded} = n
\,\b
ig( q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\b
ig)
\,
d
\t
au
`$**
**$`
d
\m
athcal{P}_{yielded} = n
\,\b
ig( q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\b
ig)
\,
d
\t
au
`$**
* Expressed *with the volume charge density $`
\r
ho=n
\,
q
`*
:
* Expressed *with the volume charge density $`
\r
ho=n
\,
q
`*
:
<br>
<br>
$`
d
\m
athcal{P}_{yielded} =
\b
ig(n
\,
q
\b
ig)
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au =
\r
ho
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au
`$
$`
d
\m
athcal{P}_{yielded} =
\b
ig(n
\,
q
\b
ig)
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au =
\r
ho
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au
`$
* Expressed *with the volume current density vector $`
\o
verrightarrow{j}=
\r
ho
\,\o
verrightarrow{v}
`*, noting that
* Expressed *with the volume current density vector $`
\o
verrightarrow{j}=
\r
ho
\,\o
verrightarrow{v}
`
$
*, noting that
$`
\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}=
\o
verrightarrow{v}
\c
dot
\o
verrightarrow{E}
`$
:
$`
\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}=
\o
verrightarrow{v}
\c
dot
\o
verrightarrow{E}
`$
:
<br>
<br>
**$`
d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au
`$**
**$`
d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au
`$**
##### Power yielded in a material with multiple types of charge carriers
##### Power yielded in a material with multiple types of charge carriers
* When a material contains **multiple types of charge carriers $`
q_i
`
**
* When a material contains **multiple types of charge carriers $`
q_i
`
$**
in *concentrations $`
n_i
`* and with *drift velocities $`
\o
verrightarrow{v_{d
\,
i}}
`*
:
in *concentrations $`
n_i
`* and with *drift velocities $`
\o
verrightarrow{v_{d
\,
i}}
`*
:
<br>
<br>
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\b
ig(n_i
\,
q_i
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
\b
ig)
\,
d
\t
au
`$
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\b
ig(n_i
\,
q_i
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
\b
ig)
\,
d
\t
au
`$
<br>
<br>
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\r
ho_i
\,
d
\t
au
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
`$
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\r
ho_i
\,
d
\t
au
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
`$
<br>
<br>
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\o
verrightarrow{j_i}
\c
dot
\o
verrightarrow{E}
\,
d
\t
au
`$
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\o
verrightarrow{j_i}
\c
dot
\o
verrightarrow{E}
\,
d
\t
au
`$
<br>
<br>
*$`
d
\m
athcal{P}_{yielded} =
\o
verrightarrow{j}_{total}
\c
dot
\o
verrightarrow{E}
\,
d
\t
au
`$*
*$`
d
\m
athcal{P}_{yielded} =
\o
verrightarrow{j}_{total}
\c
dot
\o
verrightarrow{E}
\,
d
\t
au
`$*
* By simply setting *$`
\o
verrightarrow{j}_{total}=
\o
verrightarrow{j}
`*
:
* By simply setting *$`
\o
verrightarrow{j}_{total}=
\o
verrightarrow{j}
`*
:
<br>
<br>
**$`
\l
arge{
\m
athbf{d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
**$`
\l
arge{
\m
athbf{d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
* The *power yielded* by the electromagnetic field *in a volume $`
\t
au
`* is called **$`
\l
arge{
\t
ext{Joule Effect}}
`**,
* The *power yielded* by the electromagnetic field *in a volume $`
\t
au
`* is called **$`
\l
arge{
\t
ext{Joule Effect}}
`**,
<br>
<br>
**$`
\l
arge{
\d
isplaystyle
\m
athbf{
\m
athcal{P}_{yielded} =
\i
iint_{
\t
au}
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
**$`
\l
arge{
\d
isplaystyle
\m
athbf{
\m
athcal{P}_{yielded} =
\i
iint_{
\t
au}
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
<br>
<br>
...
@@ -627,20 +627,20 @@ I recognize here the law of conservation of charge.
...
@@ -627,20 +627,20 @@ I recognize here the law of conservation of charge.
##### Is the expression of the volumetric energy density of the electromagnetic field contained in Maxwell's equations?
##### Is the expression of the volumetric energy density of the electromagnetic field contained in Maxwell's equations?
--------------------->
--------------------->
* Start with the mathematical identity
:
* Start with the mathematical identity
:
<br>
<br>
$`
\m
athbf{
\t
ext{div}
\,\b
ig(
\o
verrightarrow{U}
\t
imes
\o
verrightarrow{V}
\b
ig)=
$`
\m
athbf{
\t
ext{div}
\,\b
ig(
\o
verrightarrow{U}
\t
imes
\o
verrightarrow{V}
\b
ig)=
\o
verrightarrow{V}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{U}
\b
ig)
\,
-
\,\o
verrightarrow{U}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{V}
\b
ig)}
`$
\o
verrightarrow{V}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{U}
\b
ig)
\,
-
\,\o
verrightarrow{U}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{V}
\b
ig)}
`$
<br>
<br>
and apply it to the electromagnetic field $`
\b
ig(
\o
verrightarrow{E},
\,\o
verrightarrow{B}
\b
ig)
`$ by setting $`
\o
verrightarrow{U}=
\o
verrightarrow{E}
`$
and apply it to the electromagnetic field $`
\b
ig(
\o
verrightarrow{E},
\,\o
verrightarrow{B}
\b
ig)
`$ by setting $`
\o
verrightarrow{U}=
\o
verrightarrow{E}
`$
and $`
\o
verrightarrow{V}=
\o
verrightarrow{B}
`$
and $`
\o
verrightarrow{V}=
\o
verrightarrow{B}
`$
<br>
<br>
**$`
\m
athbf{
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)=
\o
verrightarrow{B}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{E}
\b
ig)
\,
-
\,\o
verrightarrow{E}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{B}
\b
ig)}
`$**
**$`
\m
athbf{
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)=
\o
verrightarrow{B}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{E}
\b
ig)
\,
-
\,\o
verrightarrow{E}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{B}
\b
ig)}
`$**
<br>
<br>
$`
\c
olor{blue}{
\s
criptsize{
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{Identify the terms }
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{E}
\t
ext{ and }
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{B}}}
`$
\t
ext{Identify the terms }
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{E}
\t
ext{ and }
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{B}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{ with their causes, respectively}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{ with their causes, respectively}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{the Maxwell-Faraday and Maxwell-Ampère equations}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{the Maxwell-Faraday and Maxwell-Ampère equations}}}
`$
<br>
<br>
$`
\b
egin{align}
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)
$`
\b
egin{align}
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)
=&
\o
verrightarrow{B}
\c
dot
=&
\o
verrightarrow{B}
\c
dot
...
@@ -648,7 +648,7 @@ I recognize here the law of conservation of charge.
...
@@ -648,7 +648,7 @@ I recognize here the law of conservation of charge.
\u
nderbrace{
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{E}}
\u
nderbrace{
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{E}}
_{
\c
olor{blue}{=-
\f
rac{
\p
artial
\v
ec{B}}{
\p
artial t}}}
\b
ig)
\,\\
_{
\c
olor{blue}{=-
\f
rac{
\p
artial
\v
ec{B}}{
\p
artial t}}}
\b
ig)
\,\\
&
\q
uad-
\,\o
verrightarrow{E}
\c
dot
\b
ig(
\u
nderbrace{
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{B}}_{
\c
olor{blue}{=
\m
u_0
\,\v
ec{j}+
\m
u_0
\e
psilon_0
\f
rac{
\p
artial
\v
ec{E}}{
\p
artial t}
&
\q
uad-
\,\o
verrightarrow{E}
\c
dot
\b
ig(
\u
nderbrace{
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{B}}_{
\c
olor{blue}{=
\m
u_0
\,\v
ec{j}+
\m
u_0
\e
psilon_0
\f
rac{
\p
artial
\v
ec{E}}{
\p
artial t}
}}
\b
ig)
\e
nd{align}
`$
}}
\b
ig)
\e
nd{align}
`$
<br>
<br>
$`
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)
`$
$`
\t
ext{div}
\,\b
ig(
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}
\b
ig)
`$
$`
\q
uad=-
\,\m
u_0
\,\v
ec{j}
\c
dot
\o
verrightarrow{E}
\,
-
\,\m
u_0
\,\e
psilon_0
\d
frac{
\p
artial
\v
ec{E}}{
\p
artial t}
\c
dot
\o
verrightarrow{E}
$`
\q
uad=-
\,\m
u_0
\,\v
ec{j}
\c
dot
\o
verrightarrow{E}
\,
-
\,\m
u_0
\,\e
psilon_0
\d
frac{
\p
artial
\v
ec{E}}{
\p
artial t}
\c
dot
\o
verrightarrow{E}
...
@@ -677,9 +677,9 @@ I recognize here the law of conservation of charge.
...
@@ -677,9 +677,9 @@ I recognize here the law of conservation of charge.
\,
-
\,\d
frac{
\e
psilon_0}{2}
\,\d
frac{
\p
artial E^2}{
\p
artial t}
\,
-
\,\d
frac{
\e
psilon_0}{2}
\,\d
frac{
\p
artial E^2}{
\p
artial t}
\,
\,
-
\,\d
frac{1}{2
\,\m
u_0}
\,\d
frac{
\p
artial B^2}{
\p
artial t}
-
\,\d
frac{1}{2
\,\m
u_0}
\,\d
frac{
\p
artial B^2}{
\p
artial t}
`$
$
`$
<br>
<br>
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{which you can rewrite:}}}
`$
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{which you can rewrite:}}}
`$
<br>
<br>
**$`
\m
athbf{
**$`
\m
athbf{
\t
ext{div}
\,\l
eft(
\d
frac{
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}}{
\m
u_0}
\r
ight)}
`$
\t
ext{div}
\,\l
eft(
\d
frac{
\o
verrightarrow{E}
\t
imes
\o
verrightarrow{B}}{
\m
u_0}
\r
ight)}
`$
...
@@ -689,15 +689,15 @@ I recognize here the law of conservation of charge.
...
@@ -689,15 +689,15 @@ I recognize here the law of conservation of charge.
\r
ight)
\r
ight)
}
`$**
}
`$**
* Thus appears the **volumetric energy density of the electromagnetic field** with *SI unit: $`
J
\,
m^{-3}
`
*:
* Thus appears the **volumetric energy density of the electromagnetic field** with *SI unit: $`
J
\,
m^{-3}
`
$* :
<br>
<br>
**$`
\l
arge{
\m
athbf{
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}+
\d
frac{B^2}{2
\m
u_0}}}
`$**
**$`
\l
arge{
\m
athbf{
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}+
\d
frac{B^2}{2
\m
u_0}}}
`$**
* This volumetric density $`
\r
ho_{energy-EM}^{3D}
`$ *has two components*:
* This volumetric density $`
\r
ho_{energy-EM}^{3D}
`$ *has two components*:
* an *electric component* **$`
\;\r
ho_{elec}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`$**
* an *electric component* **$`
\;\r
ho_{elec}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`$**
* a *magnetic component* **$`
\;\r
ho_{mag}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`$**.
* a *magnetic component* **$`
\;\r
ho_{mag}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`$**.
* The electromagnetic energy $`
\m
athcal{E}_{EM}
`$ contained **in a volume $`
\t
au
`
** is expressed as:
* The electromagnetic energy $`
\m
athcal{E}_{EM}
`$ contained **in a volume $`
\t
au
`
$** is expressed as :
<br>
<br>
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{E}_{EM}=
\i
iint_{
\t
au}
\l
eft(
\d
frac{
\e
psilon_0
\,
E^2}{2}+
\d
frac{B^2}{2
\m
u_0}
\r
ight) d
\t
au}}
`$**
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{E}_{EM}=
\i
iint_{
\t
au}
\l
eft(
\d
frac{
\e
psilon_0
\,
E^2}{2}+
\d
frac{B^2}{2
\m
u_0}
\r
ight) d
\t
au}}
`$**
...
@@ -711,38 +711,38 @@ I recognize here the law of conservation of charge.
...
@@ -711,38 +711,38 @@ I recognize here the law of conservation of charge.
##### Wave Equation
##### Wave Equation
* For a *vector field $`
\o
verrightarrow{U}(
\o
verrightarrow{r},t)
`*, the **d'Alembert wave equation** is written as
:
* For a *vector field $`
\o
verrightarrow{U}(
\o
verrightarrow{r},t)
`*, the **d'Alembert wave equation** is written as
:
<br>
<br>
**$`
\D
elta
\o
verrightarrow{U} -
\d
frac{1}{v^2}
\;
\d
frac{
\p
artial^2
\;\o
verrightarrow{U}}{
\p
artial t^2}=0
`$**
**$`
\D
elta
\o
verrightarrow{U} -
\d
frac{1}{v^2}
\;
\d
frac{
\p
artial^2
\;\o
verrightarrow{U}}{
\p
artial t^2}=0
`$**
* The expression of the *vector Laplacian operator $`
\D
elta
`* in terms of the $`
\t
ext{grad}
`$, $`
\t
ext{div}
`$, and $`
\t
ext{curl}
`$ operators is
:
* The expression of the *vector Laplacian operator $`
\D
elta
`* in terms of the $`
\t
ext{grad}
`$, $`
\t
ext{div}
`$, and $`
\t
ext{curl}
`$ operators is
:
<br>
<br>
*$`
\D
elta =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\r
ight) -
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\r
ight)
`$*
*$`
\D
elta =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\r
ight) -
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\r
ight)
`$*
* The **idea** is to *calculate for each of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`*
* The **idea** is to *calculate for each of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`
$
*
the expression of *its Laplacian*, to see if it can be identified with the wave equation.
the expression of *its Laplacian*, to see if it can be identified with the wave equation.
##### Study of the $`
\o
verrightarrow{E}
`$ Component of the Electromagnetic Field
##### Study of the $`
\o
verrightarrow{E}
`$ Component of the Electromagnetic Field
* To **establish the expression $`
\D
elta
\o
verrightarrow{E}
`**, I calculate
* To **establish the expression $`
\D
elta
\o
verrightarrow{E}
`
$
**, I calculate
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight)
`$ and then
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight)
`$ and then
$`
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight)
`* from Maxwell's equations.
$`
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight)
`
$
* from Maxwell's equations.
* $`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
* $`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
\o
verrightarrow{
\t
ext{curl}}
\l
eft(-
\d
frac{
\p
artial
\o
verrightarrow{B}}{
\p
artial t}
\r
ight)
`$
\o
verrightarrow{
\t
ext{curl}}
\l
eft(-
\d
frac{
\p
artial
\o
verrightarrow{B}}{
\p
artial t}
\r
ight)
`$
<br>
<br>
In classical physics, space and time are decoupled. The spatial coordinates
In classical physics, space and time are decoupled. The spatial coordinates
and the time coordinate are independent. The order of differentiation or integration between
and the time coordinate are independent. The order of differentiation or integration between
spatial coordinates and the time coordinate does not matter, so
:
spatial coordinates and the time coordinate does not matter, so
:
<br>
<br>
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
-
\d
frac{
\p
artial}{
\p
artial t}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{B}
\r
ight)
`$
-
\d
frac{
\p
artial}{
\p
artial t}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{B}
\r
ight)
`$
<br><br>
<br><br>
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
-
\d
frac{
\p
artial}{
\p
artial t}
\l
eft(
\m
u_0
\o
verrightarrow{j} +
\m
u_0
\e
psilon_0
\d
frac{
\p
artial
\o
verrightarrow{E}}{
\p
artial t}
\r
ight)
`$
-
\d
frac{
\p
artial}{
\p
artial t}
\l
eft(
\m
u_0
\o
verrightarrow{j} +
\m
u_0
\e
psilon_0
\d
frac{
\p
artial
\o
verrightarrow{E}}{
\p
artial t}
\r
ight)
`$
<br><br>
<br><br>
*$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
*$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
-
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2}
`$*
-
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2}
`$*
<br><br>
<br><br>
* *$`
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight) =
* *$`
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight) =
...
@@ -751,37 +751,37 @@ I recognize here the law of conservation of charge.
...
@@ -751,37 +751,37 @@ I recognize here the law of conservation of charge.
* Reconstructing
* Reconstructing
$`
\D
elta
\o
verrightarrow{E} =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight) -
$`
\D
elta
\o
verrightarrow{E} =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight) -
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight)
`$
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight)
`$
gives
:
gives
:
<br>
<br>
$`
\D
elta
\o
verrightarrow{E} =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\d
frac{
\r
ho}{
\e
psilon_0}
\r
ight) +
$`
\D
elta
\o
verrightarrow{E} =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\d
frac{
\r
ho}{
\e
psilon_0}
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t} +
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2}
`$
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t} +
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2}
`$
<br>
<br>
which, by identifying with the first term of the wave equation, gives
:
which, by identifying with the first term of the wave equation, gives
:
**$`
\m
athbf{
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
**$`
\m
athbf{
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\d
frac{1}{
\e
psilon_0}
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\r
ho
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t}}
`$**
\d
frac{1}{
\e
psilon_0}
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\r
ho
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t}}
`$**
<br>
<br>
*(wave equation for the electric field)*
*(wave equation for the electric field)*
##### Study of the $`
\o
verrightarrow{B}
`$ Component of the Electromagnetic Field
##### Study of the $`
\o
verrightarrow{B}
`$ Component of the Electromagnetic Field
* A *similar study* (proposed as a self-test in the advanced section) would lead me
* A *similar study* (proposed as a self-test in the advanced section) would lead me
to the propagation equation for the magnetic field $`
\o
verrightarrow{B}
`$
:
to the propagation equation for the magnetic field $`
\o
verrightarrow{B}
`$
:
<br>
<br>
**$`
\m
athbf{
\D
elta
\o
verrightarrow{B} -
\e
psilon_0
\m
u_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
**$`
\m
athbf{
\D
elta
\o
verrightarrow{B} -
\e
psilon_0
\m
u_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
-
\m
u_0
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{j}}
`$**
-
\m
u_0
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{j}}
`$**
<br>
<br>
*(wave equation for the magnetic field)*
*(wave equation for the magnetic field)*
##### Propagation of an Electromagnetic Wave in Matter
##### Propagation of an Electromagnetic Wave in Matter
* The study starts from Maxwell's equations and the two equations
:
* The study starts from Maxwell's equations and the two equations
:
<br>
<br>
$`
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
$`
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\d
frac{1}{
\e
psilon_0}
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\r
ho
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t}
`$
\d
frac{1}{
\e
psilon_0}
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\r
ho
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t}
`$
<br>
<br>
$`
\D
elta
\o
verrightarrow{B} -
\e
psilon_0
\m
u_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
$`
\D
elta
\o
verrightarrow{B} -
\e
psilon_0
\m
u_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
-
\m
u_0
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{j}
`$
-
\m
u_0
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{j}
`$
<br>
<br>
and is the subject of an entire **development in a later chapter**.
and is the subject of an entire **development in a later chapter**.
...
@@ -789,18 +789,18 @@ I recognize here the law of conservation of charge.
...
@@ -789,18 +789,18 @@ I recognize here the law of conservation of charge.
* *Empty space* is characterized by an absence of charges, whether fixed or moving.
* *Empty space* is characterized by an absence of charges, whether fixed or moving.
The volume charge density $`
\r
ho_{
\t
ext{vacuum}}
`$ as well as the volume current density vector
The volume charge density $`
\r
ho_{
\t
ext{vacuum}}
`$ as well as the volume current density vector
$`
\o
verrightarrow{j}_{
\t
ext{vacuum}}
`$ have a value of zero throughout empty space,
$`
\o
verrightarrow{j}_{
\t
ext{vacuum}}
`$ have a value of zero throughout empty space,
<br>
<br>
*$`
\r
ho_{
\t
ext{vacuum}}=0
\q
uad
\t
ext{and}
\q
uad
\o
verrightarrow{j}_{
\t
ext{vacuum}}=
\o
verrightarrow{0}
`$*.
*$`
\r
ho_{
\t
ext{vacuum}}=0
\q
uad
\t
ext{and}
\q
uad
\o
verrightarrow{j}_{
\t
ext{vacuum}}=
\o
verrightarrow{0}
`$*.
* Therefore, the propagation of the electromagnetic wave in vacuum is expressed in the form
* Therefore, the propagation of the electromagnetic wave in vacuum is expressed in the form
of a system of **two d'Alembert equations**
:
of a system of **two d'Alembert equations**
:
<br>
<br>
**$`
\l
arge{
\b
oldsymbol{
\m
athbf{
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\o
verrightarrow{0}}}}
`$**
**$`
\l
arge{
\b
oldsymbol{
\m
athbf{
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\o
verrightarrow{0}}}}
`$**
<br>
<br>
**$`
\l
arge{
\b
oldsymbol{
\m
athbf{
\D
elta
\o
verrightarrow{B} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
\o
verrightarrow{0}}}}
`$**
**$`
\l
arge{
\b
oldsymbol{
\m
athbf{
\D
elta
\o
verrightarrow{B} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
\o
verrightarrow{0}}}}
`$**
!!!! *Attention*
:
!!!! *Attention*
:
!!!!
!!!!
!!!! *Maxwell's equations imply the propagation of the electromagnetic field*.
!!!! *Maxwell's equations imply the propagation of the electromagnetic field*.
!!!!
!!!!
...
@@ -821,13 +821,13 @@ I recognize here the law of conservation of charge.
...
@@ -821,13 +821,13 @@ I recognize here the law of conservation of charge.
##### Speed of Light in Vacuum
##### Speed of Light in Vacuum
* Identifying the propagation equations of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`$
* Identifying the propagation equations of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`$
with the d'Alembert wave equation shows that *the electromagnetic field propagates at the speed*
with the d'Alembert wave equation shows that *the electromagnetic field propagates at the speed*
<br>
<br>
*$`
\l
arge{
\m
athscr{v}=
\d
frac{1}{
\s
qrt{
\e
psilon_0
\m
u_0}}}
`$*
*$`
\l
arge{
\m
athscr{v}=
\d
frac{1}{
\s
qrt{
\e
psilon_0
\m
u_0}}}
`$*
* The *speed of light in vacuum*, denoted *$`
\m
athbf{c}
`$*, is a **fundamental constant** of the universe, and its exact value is
:
* The *speed of light in vacuum*, denoted *$`
\m
athbf{c}
`$*, is a **fundamental constant** of the universe, and its exact value is
:
<br>
<br>
*$`
\l
arge{c=299,792,458
\,
\t
ext{m}
\,
\t
ext{s}^{-1}
\a
pprox 3
\t
imes 10^8
\,
\t
ext{m}
\,
\t
ext{s}^{-1}}
`$*
*$`
\l
arge{c=299,792,458
\,
\t
ext{m}
\,
\t
ext{s}^{-1}
\a
pprox 3
\t
imes 10^8
\,
\t
ext{m}
\,
\t
ext{s}^{-1}}
`$*
!! *For further reading*:
!! *For further reading*:
!!
!!
...
@@ -872,9 +872,9 @@ I recognize here the law of conservation of charge.
...
@@ -872,9 +872,9 @@ I recognize here the law of conservation of charge.
#### What Is the Poynting Vector?
#### What Is the Poynting Vector?
* The **electromagnetic wave contains energy**
* The **electromagnetic wave contains energy**
* with *at each point in space* a **volumetric energy density $`
\r
ho_{energy-EM}^{3D}
`**,
* with *at each point in space* a **volumetric energy density $`
\r
ho_{energy-EM}^{3D}
`
$$
**,
- with an *electric component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`*,
- with an *electric component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`
$
*,
- with a *magnetic component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`*.
- with a *magnetic component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`
$
*.
* which **moves in vacuum** *at speed $`
c
`$*.
* which **moves in vacuum** *at speed $`
c
`$*.
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
...
@@ -900,7 +900,7 @@ I recognize here the law of conservation of charge.
...
@@ -900,7 +900,7 @@ I recognize here the law of conservation of charge.
! The displacement of a charge (SI unit: $`
C
`$) contained in an elementary volume
! The displacement of a charge (SI unit: $`
C
`$) contained in an elementary volume
! $`
d
\t
au
`$ (SI: $`
m^3
`$) with volume charge density
! $`
d
\t
au
`$ (SI: $`
m^3
`$) with volume charge density
! $`
\r
ho_{charge}^{3D}
`$ (SI: $`
C
\,
m^{-3
`$) at a velocity
! $`
\r
ho_{charge}^{3D}
`$ (SI: $`
C
\,
m^{-3
`$) at a velocity
! $`
\o
verrightarrow{v_d}
`$ (SI: $`
m
\,
s^{-1}
`$)
:
! $`
\o
verrightarrow{v_d}
`$ (SI: $`
m
\,
s^{-1}
`$)
:
! * allows defining a volume electric current density vector
! * allows defining a volume electric current density vector
! $`
\o
verrightarrow{j}_{current}^{3D}=
\r
ho_{charge}^{3D}
\,
v_d
`$
! $`
\o
verrightarrow{j}_{current}^{3D}=
\r
ho_{charge}^{3D}
\,
v_d
`$
! (SI: $`
A
\,
m^{-2}
`$),
! (SI: $`
A
\,
m^{-2}
`$),
...
@@ -966,24 +966,24 @@ I recognize here the law of conservation of charge.
...
@@ -966,24 +966,24 @@ I recognize here the law of conservation of charge.
* Since electrical energy is proportional to $`
E^2
`$, <br>
* Since electrical energy is proportional to $`
E^2
`$, <br>
the *period of energy variations* of the wave is **$`
\m
athbf{T_{energy}}
`** *$`
\m
athbf{=
\d
frac{T_{wave}}{2}}
`$*.
the *period of energy variations* of the wave is **$`
\m
athbf{T_{energy}}
`** *$`
\m
athbf{=
\d
frac{T_{wave}}{2}}
`$*.
* Every **sensor** is characterized by a **response time $`
\m
athbf{
\D
elta t_{response}}
`
** that quantifies its *speed*.
* Every **sensor** is characterized by a **response time $`
\m
athbf{
\D
elta t_{response}}
`
$** that quantifies its *speed*.
<br>
<br>
Consider a sensor sensitive to electromagnetic energy:
Consider a sensor sensitive to electromagnetic energy:
* If *$`
\m
athbf{
\D
elta t_{response}
\l
l T_{energy}}
`*, then the sensor is sensitive to the *instantaneous power*
:
* If *$`
\m
athbf{
\D
elta t_{response}
\l
l T_{energy}}
`*, then the sensor is sensitive to the *instantaneous power*
:
<br>
<br>
*$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{P}(t)=
\i
int_S
\o
verrightarrow{
\P
i}(t)
\c
dot
\o
verrightarrow{dS}}}
`$*
*$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{P}(t)=
\i
int_S
\o
verrightarrow{
\P
i}(t)
\c
dot
\o
verrightarrow{dS}}}
`$*
<br>
<br>
* If **$`
\m
athbf{
\D
elta t_{response}
\g
g T_{energy}}
`**, then the sensor cannot follow the temporal variations of
* If **$`
\m
athbf{
\D
elta t_{response}
\g
g T_{energy}}
`**, then the sensor cannot follow the temporal variations of
the instantaneous power and only measures the **average value of the power** estimated over $`
\D
elta t_{response}
`$
:
the instantaneous power and only measures the **average value of the power** estimated over $`
\D
elta t_{response}
`$
:
<br>
<br>
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
<
\
mathcal
{
P
}(
t
)
>
\;
=
\i
int_S
<
\
overrightarrow
{\
Pi
}(
t
)
>
\c
dot
\o
verrightarrow{dS}}}
`$**
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
<
\
mathcal
{
P
}(
t
)
>
\;
=
\i
int_S
<
\
overrightarrow
{\
Pi
}(
t
)
>
\c
dot
\o
verrightarrow{dS}}}
`$**
!!! *Example*:
!!! *Example*:
!!!
!!!
!!! The *visible domain* corresponds to:
!!! The *visible domain* corresponds to:
!!! * a *wavelength* in vacuum on the order of 500 nanometers: *$`
\m
athbf{
\l
ambda = 5
\c
dot 10^{-7}
\,
m}
`$* <br>
!!! * a *wavelength* in vacuum on the order of 500 nanometers: *$`
\m
athbf{
\l
ambda = 5
\c
dot 10^{-7}
\,
m}
`$* <br>
!!! <br>
!!! <br>
!!! This corresponds to a time period of the electric field $`
T_{wave}
`$ of: <br>
!!! This corresponds to a time period of the electric field $`
T_{wave}
`$ of
: <br>
!!! $`
T_{wave}=
\d
frac{
\l
ambda}{c}=
\d
frac{5
\c
dot 10^{-7}}{3
\c
dot 10^{8}} = 1.7
\t
imes 10^{-15}
\,
s
`$, <br>
!!! $`
T_{wave}=
\d
frac{
\l
ambda}{c}=
\d
frac{5
\c
dot 10^{-7}}{3
\c
dot 10^{8}} = 1.7
\t
imes 10^{-15}
\,
s
`$, <br>
!!! or <br>
!!! or <br>
!!! $`
T_{energy}=8.5
\t
imes 10^{-16}
\,
s
`$ <br>
!!! $`
T_{energy}=8.5
\t
imes 10^{-16}
\,
s
`$ <br>
...
@@ -1006,15 +1006,15 @@ For transverse and classical resources, parallel links
...
@@ -1006,15 +1006,15 @@ For transverse and classical resources, parallel links
#### What Is the Electromagnetic Spectrum?
#### What Is the Electromagnetic Spectrum?
* **Maxwell** hypothesized that *visible light*, whose speed had just been measured from
* **Maxwell** hypothesized that *visible light*, whose speed had just been measured from
astronomical observations of the motion of Jupiter's satellites, *is an electromagnetic wave*.
astronomical observations of the motion of Jupiter's satellites, *is an electromagnetic wave*.
<br>
<br>
$`
\L
ongrightarrow
`$ Light is only a tiny part of electromagnetic waves.
$`
\L
ongrightarrow
`$ Light is only a tiny part of electromagnetic waves.
<br>
<br>
$`
\L
ongrightarrow
`
$ A
*whole new world of "lights"*
is revealed, called the
**electromagnetic spectrum**
.
$`
\L
ongrightarrow
`
$ A
*whole new world of "lights"*
is revealed, called the
**electromagnetic spectrum**
.


*
In particular,
**knowledge of the universe**
resulted
*before Maxwell*
from the sole observation of the
*visible domain*
,
*
In particular,
**knowledge of the universe**
resulted
*before Maxwell*
from the sole observation of the
*visible domain*
,


...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment