Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
8695e7cf
Commit
8695e7cf
authored
Dec 21, 2025
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.en.md
parent
efe5068e
Pipeline
#21622
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
77 deletions
+77
-77
cheatsheet.en.md
...-vacuum/10.maxwell-equations/20.overview/cheatsheet.en.md
+77
-77
No files found.
12.temporary_ins/90.electromagnetism-in-vacuum/10.maxwell-equations/20.overview/cheatsheet.en.md
View file @
8695e7cf
...
...
@@ -555,10 +555,10 @@ I recognize here the law of conservation of charge.
! *Note:*
!
! The *magnetic force $`
\o
verrightarrow{F}_{magn.}=q
\,\o
verrightarrow{v}
\t
imes
\o
verrightarrow{B}
`*,
! The *magnetic force $`
\o
verrightarrow{F}_{magn.}=q
\,\o
verrightarrow{v}
\t
imes
\o
verrightarrow{B}
`
$
*,
! by nature perpendicular to the velocity vector $`
\o
verrightarrow{v}
`$ and thus to the elementary displacement
! vector $`
\o
verrightarrow{dl}=
\o
verrightarrow{v}
\,
dt
`$ at every point on the particle's trajectory
! with charge $`
q
`*, *does no work*:
! with charge $`
q
`
$
*, *does no work*:
!
! $`
\m
athbf{d
\m
athcal{W}_{magn} =
\o
verrightarrow{F}_{magn}
\c
dot
\o
verrightarrow{dl}=0}
`$
!
...
...
@@ -568,29 +568,29 @@ I recognize here the law of conservation of charge.
* The **elementary power yielded by the field** to this particle is written as:
<br>
**$`
\m
athbf{
\m
athcal{P}_{yielded} =
\d
frac{d
\m
athcal{W}_{Lorentz}}{dt} = q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}}
`**
**$`
\m
athbf{
\m
athcal{P}_{yielded} =
\d
frac{d
\m
athcal{W}_{Lorentz}}{dt} = q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}}
`
$
**
##### Power yielded in a material with a single type of charge carrier
* If the **material medium** contains *$`
n
`
* identical charge carriers of charge $`
q
`*
per unit volume*,
* If the **material medium** contains *$`
n
`
$ identical charge carriers of charge $`
q
`$
per unit volume*,
then an elementary volume $`
d
\t
au
`$ contains $`
n
\,\t
au
`$ charge carriers
and the **elementary power yielded** by the electromagnetic field is written as
:
and the **elementary power yielded** by the electromagnetic field is written as
:
<br>
**$`
d
\m
athcal{P}_{yielded} = n
\,\b
ig( q
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\b
ig)
\,
d
\t
au
`$**
* Expressed *with the volume charge density $`
\r
ho=n
\,
q
`*
:
* Expressed *with the volume charge density $`
\r
ho=n
\,
q
`*
:
<br>
$`
d
\m
athcal{P}_{yielded} =
\b
ig(n
\,
q
\b
ig)
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au =
\r
ho
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}
\,
d
\t
au
`$
* Expressed *with the volume current density vector $`
\o
verrightarrow{j}=
\r
ho
\,\o
verrightarrow{v}
`*, noting that
$`
\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}=
\o
verrightarrow{v}
\c
dot
\o
verrightarrow{E}
`$
:
* Expressed *with the volume current density vector $`
\o
verrightarrow{j}=
\r
ho
\,\o
verrightarrow{v}
`
$
*, noting that
$`
\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v}=
\o
verrightarrow{v}
\c
dot
\o
verrightarrow{E}
`$
:
<br>
**$`
d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au
`$**
##### Power yielded in a material with multiple types of charge carriers
* When a material contains **multiple types of charge carriers $`
q_i
`
**
in *concentrations $`
n_i
`* and with *drift velocities $`
\o
verrightarrow{v_{d
\,
i}}
`*
:
* When a material contains **multiple types of charge carriers $`
q_i
`
$**
in *concentrations $`
n_i
`* and with *drift velocities $`
\o
verrightarrow{v_{d
\,
i}}
`*
:
<br>
$`
\d
isplaystyle d
\m
athcal{P}_{yielded} =
\s
um_{i=1}^p
\b
ig(n_i
\,
q_i
\,\o
verrightarrow{E}
\c
dot
\o
verrightarrow{v_i}
\b
ig)
\,
d
\t
au
`$
<br>
...
...
@@ -600,7 +600,7 @@ I recognize here the law of conservation of charge.
<br>
*$`
d
\m
athcal{P}_{yielded} =
\o
verrightarrow{j}_{total}
\c
dot
\o
verrightarrow{E}
\,
d
\t
au
`$*
* By simply setting *$`
\o
verrightarrow{j}_{total}=
\o
verrightarrow{j}
`*
:
* By simply setting *$`
\o
verrightarrow{j}_{total}=
\o
verrightarrow{j}
`*
:
<br>
**$`
\l
arge{
\m
athbf{d
\m
athcal{P}_{yielded} =
\b
ig(
\o
verrightarrow{j}
\c
dot
\o
verrightarrow{E}
\b
ig)
\,
d
\t
au}}
`$**
...
...
@@ -627,7 +627,7 @@ I recognize here the law of conservation of charge.
##### Is the expression of the volumetric energy density of the electromagnetic field contained in Maxwell's equations?
--------------------->
* Start with the mathematical identity
:
* Start with the mathematical identity
:
<br>
$`
\m
athbf{
\t
ext{div}
\,\b
ig(
\o
verrightarrow{U}
\t
imes
\o
verrightarrow{V}
\b
ig)=
\o
verrightarrow{V}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{U}
\b
ig)
\,
-
\,\o
verrightarrow{U}
\c
dot
\b
ig(
\o
verrightarrow{
\t
ext{curl}}
\,\o
verrightarrow{V}
\b
ig)}
`$
...
...
@@ -677,7 +677,7 @@ I recognize here the law of conservation of charge.
\,
-
\,\d
frac{
\e
psilon_0}{2}
\,\d
frac{
\p
artial E^2}{
\p
artial t}
\,
-
\,\d
frac{1}{2
\,\m
u_0}
\,\d
frac{
\p
artial B^2}{
\p
artial t}
`$
$
`$
<br>
$`
\c
olor{blue}{
\s
criptsize{
\t
ext{which you can rewrite:}}}
`$
<br>
...
...
@@ -689,7 +689,7 @@ I recognize here the law of conservation of charge.
\r
ight)
}
`$**
* Thus appears the **volumetric energy density of the electromagnetic field** with *SI unit: $`
J
\,
m^{-3}
`
*:
* Thus appears the **volumetric energy density of the electromagnetic field** with *SI unit: $`
J
\,
m^{-3}
`
$* :
<br>
**$`
\l
arge{
\m
athbf{
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}+
\d
frac{B^2}{2
\m
u_0}}}
`$**
...
...
@@ -697,7 +697,7 @@ I recognize here the law of conservation of charge.
* an *electric component* **$`
\;\r
ho_{elec}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`$**
* a *magnetic component* **$`
\;\r
ho_{mag}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`$**.
* The electromagnetic energy $`
\m
athcal{E}_{EM}
`$ contained **in a volume $`
\t
au
`
** is expressed as:
* The electromagnetic energy $`
\m
athcal{E}_{EM}
`$ contained **in a volume $`
\t
au
`
$** is expressed as :
<br>
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{E}_{EM}=
\i
iint_{
\t
au}
\l
eft(
\d
frac{
\e
psilon_0
\,
E^2}{2}+
\d
frac{B^2}{2
\m
u_0}
\r
ight) d
\t
au}}
`$**
...
...
@@ -711,29 +711,29 @@ I recognize here the law of conservation of charge.
##### Wave Equation
* For a *vector field $`
\o
verrightarrow{U}(
\o
verrightarrow{r},t)
`*, the **d'Alembert wave equation** is written as
:
* For a *vector field $`
\o
verrightarrow{U}(
\o
verrightarrow{r},t)
`*, the **d'Alembert wave equation** is written as
:
<br>
**$`
\D
elta
\o
verrightarrow{U} -
\d
frac{1}{v^2}
\;
\d
frac{
\p
artial^2
\;\o
verrightarrow{U}}{
\p
artial t^2}=0
`$**
* The expression of the *vector Laplacian operator $`
\D
elta
`* in terms of the $`
\t
ext{grad}
`$, $`
\t
ext{div}
`$, and $`
\t
ext{curl}
`$ operators is
:
* The expression of the *vector Laplacian operator $`
\D
elta
`* in terms of the $`
\t
ext{grad}
`$, $`
\t
ext{div}
`$, and $`
\t
ext{curl}
`$ operators is
:
<br>
*$`
\D
elta =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\r
ight) -
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\r
ight)
`$*
* The **idea** is to *calculate for each of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`*
* The **idea** is to *calculate for each of the fields $`
\o
verrightarrow{E}
`$ and $`
\o
verrightarrow{B}
`
$
*
the expression of *its Laplacian*, to see if it can be identified with the wave equation.
##### Study of the $`
\o
verrightarrow{E}
`$ Component of the Electromagnetic Field
* To **establish the expression $`
\D
elta
\o
verrightarrow{E}
`**, I calculate
* To **establish the expression $`
\D
elta
\o
verrightarrow{E}
`
$
**, I calculate
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight)
`$ and then
$`
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight)
`* from Maxwell's equations.
$`
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight)
`
$
* from Maxwell's equations.
* $`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
\o
verrightarrow{
\t
ext{curl}}
\l
eft(-
\d
frac{
\p
artial
\o
verrightarrow{B}}{
\p
artial t}
\r
ight)
`$
<br>
In classical physics, space and time are decoupled. The spatial coordinates
and the time coordinate are independent. The order of differentiation or integration between
spatial coordinates and the time coordinate does not matter, so
:
spatial coordinates and the time coordinate does not matter, so
:
<br>
$`
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight) =
-
\d
frac{
\p
artial}{
\p
artial t}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{B}
\r
ight)
`$
...
...
@@ -751,12 +751,12 @@ I recognize here the law of conservation of charge.
* Reconstructing
$`
\D
elta
\o
verrightarrow{E} =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\t
ext{div}
\o
verrightarrow{E}
\r
ight) -
\o
verrightarrow{
\t
ext{curl}}
\l
eft(
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{E}
\r
ight)
`$
gives
:
gives
:
<br>
$`
\D
elta
\o
verrightarrow{E} =
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\d
frac{
\r
ho}{
\e
psilon_0}
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t} +
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2}
`$
<br>
which, by identifying with the first term of the wave equation, gives
:
which, by identifying with the first term of the wave equation, gives
:
**$`
\m
athbf{
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\d
frac{1}{
\e
psilon_0}
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\r
ho
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t}}
`$**
...
...
@@ -766,7 +766,7 @@ I recognize here the law of conservation of charge.
##### Study of the $`
\o
verrightarrow{B}
`$ Component of the Electromagnetic Field
* A *similar study* (proposed as a self-test in the advanced section) would lead me
to the propagation equation for the magnetic field $`
\o
verrightarrow{B}
`$
:
to the propagation equation for the magnetic field $`
\o
verrightarrow{B}
`$
:
<br>
**$`
\m
athbf{
\D
elta
\o
verrightarrow{B} -
\e
psilon_0
\m
u_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
-
\m
u_0
\o
verrightarrow{
\t
ext{curl}}
\o
verrightarrow{j}}
`$**
...
...
@@ -775,7 +775,7 @@ I recognize here the law of conservation of charge.
##### Propagation of an Electromagnetic Wave in Matter
* The study starts from Maxwell's equations and the two equations
:
* The study starts from Maxwell's equations and the two equations
:
<br>
$`
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\d
frac{1}{
\e
psilon_0}
\o
verrightarrow{
\t
ext{grad}}
\l
eft(
\r
ho
\r
ight) +
\m
u_0
\d
frac{
\p
artial
\o
verrightarrow{j}}{
\p
artial t}
`$
...
...
@@ -794,13 +794,13 @@ I recognize here the law of conservation of charge.
*$`
\r
ho_{
\t
ext{vacuum}}=0
\q
uad
\t
ext{and}
\q
uad
\o
verrightarrow{j}_{
\t
ext{vacuum}}=
\o
verrightarrow{0}
`$*.
* Therefore, the propagation of the electromagnetic wave in vacuum is expressed in the form
of a system of **two d'Alembert equations**
:
of a system of **two d'Alembert equations**
:
<br>
**$`
\l
arge{
\b
oldsymbol{
\m
athbf{
\D
elta
\o
verrightarrow{E} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{E}}{
\p
artial t^2} =
\o
verrightarrow{0}}}}
`$**
<br>
**$`
\l
arge{
\b
oldsymbol{
\m
athbf{
\D
elta
\o
verrightarrow{B} -
\m
u_0
\e
psilon_0
\d
frac{
\p
artial^2
\o
verrightarrow{B}}{
\p
artial t^2} =
\o
verrightarrow{0}}}}
`$**
!!!! *Attention*
:
!!!! *Attention*
:
!!!!
!!!! *Maxwell's equations imply the propagation of the electromagnetic field*.
!!!!
...
...
@@ -825,7 +825,7 @@ I recognize here the law of conservation of charge.
<br>
*$`
\l
arge{
\m
athscr{v}=
\d
frac{1}{
\s
qrt{
\e
psilon_0
\m
u_0}}}
`$*
* The *speed of light in vacuum*, denoted *$`
\m
athbf{c}
`$*, is a **fundamental constant** of the universe, and its exact value is
:
* The *speed of light in vacuum*, denoted *$`
\m
athbf{c}
`$*, is a **fundamental constant** of the universe, and its exact value is
:
<br>
*$`
\l
arge{c=299,792,458
\,
\t
ext{m}
\,
\t
ext{s}^{-1}
\a
pprox 3
\t
imes 10^8
\,
\t
ext{m}
\,
\t
ext{s}^{-1}}
`$*
...
...
@@ -872,9 +872,9 @@ I recognize here the law of conservation of charge.
#### What Is the Poynting Vector?
* The **electromagnetic wave contains energy**
* with *at each point in space* a **volumetric energy density $`
\r
ho_{energy-EM}^{3D}
`**,
- with an *electric component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`*,
- with a *magnetic component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`*.
* with *at each point in space* a **volumetric energy density $`
\r
ho_{energy-EM}^{3D}
`
$$
**,
- with an *electric component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{
\e
psilon_0
\,
E^2}{2}
`
$
*,
- with a *magnetic component $`
\r
ho_{energy-EM}^{3D}=
\d
frac{B^2}{2
\m
u_0}
`
$
*.
* which **moves in vacuum** *at speed $`
c
`$*.
* The **Poynting vector** translates this fact and allows the *calculation of the energy* of an electromagnetic wave
...
...
@@ -900,7 +900,7 @@ I recognize here the law of conservation of charge.
! The displacement of a charge (SI unit: $`
C
`$) contained in an elementary volume
! $`
d
\t
au
`$ (SI: $`
m^3
`$) with volume charge density
! $`
\r
ho_{charge}^{3D}
`$ (SI: $`
C
\,
m^{-3
`$) at a velocity
! $`
\o
verrightarrow{v_d}
`$ (SI: $`
m
\,
s^{-1}
`$)
:
! $`
\o
verrightarrow{v_d}
`$ (SI: $`
m
\,
s^{-1}
`$)
:
! * allows defining a volume electric current density vector
! $`
\o
verrightarrow{j}_{current}^{3D}=
\r
ho_{charge}^{3D}
\,
v_d
`$
! (SI: $`
A
\,
m^{-2}
`$),
...
...
@@ -966,15 +966,15 @@ I recognize here the law of conservation of charge.
* Since electrical energy is proportional to $`
E^2
`$, <br>
the *period of energy variations* of the wave is **$`
\m
athbf{T_{energy}}
`** *$`
\m
athbf{=
\d
frac{T_{wave}}{2}}
`$*.
* Every **sensor** is characterized by a **response time $`
\m
athbf{
\D
elta t_{response}}
`
** that quantifies its *speed*.
* Every **sensor** is characterized by a **response time $`
\m
athbf{
\D
elta t_{response}}
`
$** that quantifies its *speed*.
<br>
Consider a sensor sensitive to electromagnetic energy:
* If *$`
\m
athbf{
\D
elta t_{response}
\l
l T_{energy}}
`*, then the sensor is sensitive to the *instantaneous power*
:
* If *$`
\m
athbf{
\D
elta t_{response}
\l
l T_{energy}}
`*, then the sensor is sensitive to the *instantaneous power*
:
<br>
*$`
\d
isplaystyle
\l
arge{
\m
athbf{
\m
athcal{P}(t)=
\i
int_S
\o
verrightarrow{
\P
i}(t)
\c
dot
\o
verrightarrow{dS}}}
`$*
<br>
* If **$`
\m
athbf{
\D
elta t_{response}
\g
g T_{energy}}
`**, then the sensor cannot follow the temporal variations of
the instantaneous power and only measures the **average value of the power** estimated over $`
\D
elta t_{response}
`$
:
the instantaneous power and only measures the **average value of the power** estimated over $`
\D
elta t_{response}
`$
:
<br>
**$`
\d
isplaystyle
\l
arge{
\m
athbf{
<
\
mathcal
{
P
}(
t
)
>
\;
=
\i
int_S
<
\
overrightarrow
{\
Pi
}(
t
)
>
\c
dot
\o
verrightarrow{dS}}}
`$**
...
...
@@ -983,7 +983,7 @@ I recognize here the law of conservation of charge.
!!! The *visible domain* corresponds to:
!!! * a *wavelength* in vacuum on the order of 500 nanometers: *$`
\m
athbf{
\l
ambda = 5
\c
dot 10^{-7}
\,
m}
`$* <br>
!!! <br>
!!! This corresponds to a time period of the electric field $`
T_{wave}
`$ of: <br>
!!! This corresponds to a time period of the electric field $`
T_{wave}
`$ of
: <br>
!!! $`
T_{wave}=
\d
frac{
\l
ambda}{c}=
\d
frac{5
\c
dot 10^{-7}}{3
\c
dot 10^{8}} = 1.7
\t
imes 10^{-15}
\,
s
`$, <br>
!!! or <br>
!!! $`
T_{energy}=8.5
\t
imes 10^{-16}
\,
s
`$ <br>
...
...
@@ -1012,7 +1012,7 @@ For transverse and classical resources, parallel links
<br>
$`
\L
ongrightarrow
`
$ A
*whole new world of "lights"*
is revealed, called the
**electromagnetic spectrum**
.


*
In particular,
**knowledge of the universe**
resulted
*before Maxwell*
from the sole observation of the
*visible domain*
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment