Commit 8b73572d authored by Claude Meny's avatar Claude Meny

Update...

Update 12.temporary_ins/04-math-tools/70.systems-of-differential-equations/40.parallel-1/cheatsheet.fr.md
parent 5d814c48
Pipeline #16397 canceled with stage
...@@ -68,9 +68,25 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$. ...@@ -68,9 +68,25 @@ $`M^0 = I_m`$ matrice identité de dimension $`m\times m`$.
$`M`$ est diagonale : $`M`$ est diagonale :
$`M=\begin{pmatrix} \lambda_1 & cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & & cdots & 0 \\ \end{pmatrix}`$ $`M=\begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_m \\ \end{pmatrix}`$
$`e^{\,M}`$ ou
$`M=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_m \\ \end{pmatrix}`$
$`e^{\,M}=
\begin{pmatrix} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & 1 \\ \end{pmatrix}
+
\begin{pmatrix} & \lambda_1 & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_m \\ \end{pmatrix}
+
\dfrac{1}{2!}\begin{pmatrix} & \lambda_1 & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_m \\ \end{pmatrix}^2
+
\cdots
+
\dfrac{1}{k!}\begin{pmatrix} & \lambda_1 & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \lambda_m \\ \end{pmatrix}^k
+
\cdots
`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment