Commit 987075e7 authored by Goutte's avatar Goutte

Remove old things.

parent 5b0adf04
# This page configuration is shared by all locales, in this directory.
# You can override it in the individual frontmatter of the pages.
content:
# https://learn.getgrav.org/15/content/collections#summary-of-collection-options
items: @self.children
anchors:
active: false
\ No newline at end of file
---
title: Mathematics
slug: mathematics
---
\ No newline at end of file
---
title: Matemáticas
slug: mathematics
---
---
title: Mathématiques
slug: mathematics
---
visible: false
pedagogic_paths:
- slug: learning-about-light
level: 2
- slug: understanding-virtual-reality
level: 1
\ No newline at end of file
---
title: Annexe
slug: annexe
---
## Annexe
!!!! DUMMY CONTENT
### Tests
La [Constante $c$](#une-constante-fondamentale-de-la-nature-la-vitesse-de-la-lumière).
### Unrelated image
![Showing rays for different focal points](rays-when-focal-point-moves.gif)
### Unrelated video
<iframe width="560" height="315" sandbox="allow-same-origin allow-scripts" src="https://video.samedi.pm/videos/embed/c06dbd9e-d8c7-4655-aade-51ae95b998c3" frameborder="0" allowfullscreen></iframe>
---
Morbi suscipit enim tristique hendrerit commodo. Pellentesque quis pulvinar urna. Nulla vel hendrerit neque. Maecenas bibendum sem eget tellus auctor, ac vestibulum ante iaculis. Aenean placerat, nulla vehicula vestibulum suscipit, lacus urna pharetra est, eget pellentesque purus est non tortor. Aenean ac consequat lectus. Praesent varius lacus eu semper tristique. Proin vehicula, velit eu maximus commodo, felis ipsum viverra ex, placerat volutpat risus sem et turpis. Duis faucibus ut eros in facilisis. Duis nulla nisi, interdum quis ornare a, pulvinar ac eros. Aenean non rutrum ante. Suspendisse dui enim, auctor eget enim porttitor, pellentesque pellentesque dolor. Nullam laoreet odio quam, eu laoreet augue venenatis vitae. In nec quam et diam commodo sagittis eget et tellus. Quisque odio sapien, pretium et quam eget, dignissim hendrerit purus. Sed eros sem, semper sit amet tincidunt a, malesuada eget odio.
Nulla urna tortor, faucibus at euismod quis, interdum at risus. Pellentesque scelerisque eget mauris eget rhoncus. Curabitur sed nisi auctor mauris posuere ornare porta a turpis. Etiam dignissim elementum nisi, a dapibus ipsum sagittis non. Quisque dapibus mauris dui, id consequat dolor consectetur dapibus. Sed ornare tristique pellentesque. Ut aliquam bibendum massa quis pretium. Suspendisse blandit lectus nec ligula ultrices congue. Maecenas eros mauris, lobortis a orci vitae, tempus venenatis tortor. Aliquam sit amet felis non lacus pulvinar facilisis. Donec tellus orci, facilisis vel urna et, fermentum molestie lectus. Praesent congue iaculis tempor. Vestibulum in leo efficitur, faucibus enim ac, mattis sapien. Fusce non pretium neque, quis aliquet neque. Aenean arcu ante, ornare et malesuada nec, aliquam sit amet ligula. Donec sapien metus, sagittis quis placerat at, tempus vel quam.
Phasellus eget est vestibulum, aliquam massa et, placerat urna. Integer at magna luctus, venenatis felis quis, ornare risus. Nunc nunc ipsum, cursus nec metus sed, ullamcorper placerat ipsum. Suspendisse aliquet elit in erat blandit, sed congue neque sodales. Sed gravida blandit odio, nec ultrices enim faucibus non. Fusce quis ornare lectus. Maecenas nec sem vitae massa sagittis sodales. Suspendisse eget dictum justo. Etiam dapibus pharetra convallis. Fusce quis semper nisi. Morbi scelerisque efficitur leo a tempor. Sed eget facilisis tortor, vel fringilla ex. Curabitur commodo felis tellus, ac faucibus velit feugiat non. Mauris malesuada quis orci vel lacinia. Nulla accumsan arcu eget nibh convallis blandit.
\ No newline at end of file
visible: false
pedagogic_paths:
- slug: learning-about-light
level: 1
- slug: understanding-virtual-reality
level: 3
---
title: "The Nature of Light"
slug: the-nature-of-light
---
\ No newline at end of file
---
title: 'Domaine de validité de l''optique géométrique'
media_order: 'chrono_text_opt_geo_fr_v2.jpeg,sciences_optique_rays_fr.jpeg,chrono_opt_geo_fr_v2.jpeg,chrono-opt-geo-fr-v2.jpeg,Opt_geom_1.jpg,OG_intro.mp3,OG_intro.ogg'
slug: la-nature-de-la-lumiere
---
##Optique géométrique :<br> optique de la vie de tous les jours.
![](Opt_geom_1.jpg)
[OG_intro.mp3]
[OG_intro.ogg]
Permet de comprendre :
* La vision
* Les appareils d'optiques : <br><em>loupes, télescopes, lunettes astronomiques ou terrestres, microscopes, appareils photographiques avec téléobjectifs et zoom</em>.
* Les lunettes de vue et les lentilles de contact </em>pour corriger les défauts de la vue.
* Les phénomènes optiques comme <br> <em>le brouillard, les arcs-en-ciel, les mirages</em>.
* Le fonctionnement d'une <em>fibre optique</em>.
<!--text de l'audio :
Si l'optique géométrique est la science la plus ancienne de l'optique, c'est vraiment celle qui s'applique au plus proche de notre vie de tous les jours.
Elle permet de comprendre comme l'oeil perçoit son environnement. Elle permet aussi de comprendre comment fonctionnent les appareils optiques usuels, tels que l'appareil photo avec son zoom ou ses divers objectifs, le microscope, le télescope et les lunettes astronomiques ou terrestres.
Elle permet aussi de caractériser les défauts de l'oeil, de comprendre comment les lunettes de vue et les lentilles de contact corrigent ces défauts, et de calculer leurs profils selon les défauts à corriger.
Elle permet de comprendre les phénomènes optiques comme l'arc en ciel (aussi bien ses couleurs que sa forme et sa position par rapport au soleil) et comme les mirages observés parfois dans le désert.
Elle permet enfin de comprendre comment la lumière peut se propager dans une fibre optique, qui est à la base de tous les réseaux de communications terrestres modernes.-->
##Optique géométrique : <br> une brève chronologie
![](chrono_opt_geo_fr_v2.jpeg OG_intro.mp3?resize=300,300)
![](chrono_text_opt_geo_fr_v2.jpeg OG_intro.mp3?resize=400,800)
<img src="../images/chrono_opt_geo_fr_v2.jpeg" alt="Logo_Yo_yTU" style="width:100%"; >
<br> <br>
<img src="../images/chrono_text_opt_geo_fr_v2.jpeg" alt="Logo_Yo_yTU" style="width:100%"; >
##Optique géométrique : <br> position dans les sciences de l'optique
<img src="../images/sciences_optique_rays_fr.jpeg" alt="Logo_Yo_yTU" class="center" style="width:100%"; >
\ No newline at end of file
# This page configuration is shared by all locales, in this directory.
# You can override it in the individual frontmatter of the pages.
content:
# https://learn.getgrav.org/15/content/collections#summary-of-collection-options
items: @self.children
---
title: Physical Objects as Source of Light
slug: sources-of-light-physical-ojects
---
### Physical Objects as Source of Light
!!! TODO: TRANSLATE
!!!
!!! We can also make bigger notices,
!!! and they can be multiline !
Parmi les cinq sens de l'être humain (vue, ouïe, odorat, goût, toucher),
**la vue** est le _sens le plus développé_,
ce qui signifie que c'est le sens _qui nous donne le plus d'informations_ sur notre environnement.
Notre vision nous permet de localiser et de reconnaître des objets solides ou des étendues liquides
qui peuvent nous être utiles ou représenter un danger, des objets que nous voulons attraper ou bien éviter.
La vue nous permet de percevoir la présence et d'identifier ces objets à distance,
sans contact physique comme avec notre sens du toucher ou celui du goût.
Le **vecteur de l'information visuelle** sur la localisation, la nature et la forme de l'objet est
_la lumière émise ou diffusée par l'objet_ et qui atteint notre oeil.
<!-- à mettre en /M-->
- Deux autres de nos sens, l'ouïe et l'odorat, nous apportent aussi chacun une information à distance et sans contact, complémentaire de celle apportée par la vue. Le vecteur de l'information pour l'ouïe est le son produit par l'objet lui-même ou son déplacement, et pour l'odorat ce vecteur est le déplacement entre l'objet et nous des diverses molécules chimiques émises par l'objet et auxquelles notre odorat est sensible. D'autres espèces animales ont développé d'autres sens. Par exemple :
- dauphins et chauve-souris ont développé l'écholocalisation. En émettant des ultrasons qui seront réfléchis, et en percevant la direction et le retard temporelle de l'onde réfléchie en retour, ils arrivent à localiser et identifier les objets qui font obstacle à la libre propagation des ultra-sons.
- requins et raies ont développé au cours de l'évolution un sens qui les rends très sensible aux champs électriques créés par l'activité biologique (principalement les muscles) des autres espèces animales.
- La sensibilité au champ magnétique terrestre, qui en chaque endroit pointe dans une direction précise suivant les lignes de champ magnétique, contribue à l'orientation de nombreux oiseaux migrateurs au cours de leur longs voyages saisonniers.
Ce sont les contraintes environnementales locales, les types de ressources nutritives nécessaires et les relations entre proies et prédateurs, qui ont déterminés quels sens ont été les plus aptes pour chaque espèce à assurer sa propre survie. Ainsi les abeilles ont acquis en sens de l'odorat hyper développé pour localiser le nectar des fleurs nécessaire à la survie de la ruche. Les chauve-souris qui se déplacent la nuit et peuplent souvent des grottes ont développé particulièrement l'écholocalisation piur se situer dans leur environnement, là ou le hibou a développé un sens de la vue particulièrement sensible en faible luminosité. Les divers sens agissent de façon complémentaires pour apporter à chaque espèce toute l'information nécessaire à sa survie. La vue est sans conteste, bien que suivie de prêt par l'ouïe, le sens le plus important pour l'être humain. Sa faculté visuelle ... science et vie de juillet...</ul>
#### Sources primaires de lumière
Toute matière émet de la lumière, principalement en fonction de sa température selon la loi du corps noir. Cependant ce type de rayonnement thermique propre à chaque objet n'émet dans le visible que pour des températures de plusieurs centaines de degrés au minimum. Notre oeil est sensible à la lumière émise par ces objets très chauds émettant ce type de rayonnement, ce sont les anciennes ampoules électriques à incandescence, c'est le morceau de métal porté à plus de 800°C qui devient rougissant, et c'est bien sûr et surtout le soleil dont la température de surface est proche de $5800K$. Chaque élément de surface de ces objets très chauds émet une lumière visible dans toutes les directions du demi-espace libre situé devant lui.
<!-- à mettre en /F ou/et /M-->
- Le domaine de sensibilité de la vision humaine correspond aux ondes électromagnétiques de longueurs d'onde $\lambda\in[400nm, 780nm]$, soit une longueur d'onde moyenne de $\lambda_{moy}=500\mu m$. En vertu de la loi de Wien, le soleil dont la température de surface est de 6000 degrés Kelvin ($6000K$), le soleil émet avec un maximum d'intensité à la longueur d'onde de $\lambda=500nm$, longueur d'onde à laquelle l'atmosphère terrestre est également transparente, permettant à cette lumière de parvenir jusqu'au sol. Tout ceci n'est sûrement pas étranger au fait que au cours de l'évolution, l'oeil biologique se soit principalement adapté pour être sensible à cette gamme de longueurs d'onde que l'on nomme le domaine visible. Le domaine visible est défini par rapport au domaine de sensibilité de l'oeil humain, soit $\lambda\in[400nm, 780nm]$. Le domaine de sensibilité des diverses espèces animales peuvent varier légèrement, parfois en s'étendant au tout proche ultraviolet, parfois au tout proche infrarouge. Mais dans la vie en générale, la vision reste centrée sur le domaine $\lambda\in[250nm, 1000nm]$, qui correspond au domaine de maximum d'intensité de la lumière solaire, et à un domaine de transparence de l'atmosphère terrestre.
- Si le soleil avait été ce qui est appelé une naine rouge, c'est à dire une étoile dont la température de surface est plus froide, de l'ordre de 3000 degrés Kelvin ($3000K$), selon la loi de Wien le maximum d'émission de l'étoiles se réaliserait à une longueur d'onde moyenne double, soit $\lambda_{moy}=1\mu m$. Notre oeil étant peu sensible à cette longueur d'onde, nous apparaitraient le soleil d'un rouge bien pâle et le jour bien sombre.</li><br>
- Mon propre corps est à la température de 37°C, soit environ 300 degrés Kelvin ($300K$), soit 10 fois moins que la température de surface de l'étoile naine rouge précédente. Comme toue matière (assemblage de particules chargées liées entre elles et en mouvement) je rayonne, mais avec un maximum d'intensité situé à une longueur d'onde 10 fois plus grandes, au voisinage de $\lambda_{moy}=10\mu m$. Les lunettes permettant de me voir la nuit grâce à ma propre émission thermique utilisent soit des amplificateurs de lumières visibles (mais il faut qu'il reste un peu de lumière visible que ma peau et mes vêtements puissent diffuser), soit des capteurs de rayonnement sensibles à la longueur d'onde moyenne de $\lambda_{moy}=10\mu m$.
- Je descends encore la température de la matière d'un facteur 10, et j'obtiens une température de 30 degrés Kelvin ($30K$). le rayonnement thermique d'un corps à cette température présente un maximum d'intensité à la longueur d'onde de $\lambda_{moy}=100\mu m$. La température de ($30K$) , exprimée en degré celsius, correspond à une température d'environ $-240°C$. Aucune température naturelle aussi basse n'est observée sur la Terre, dont la température moyenne (résultant de l'équilibre entre la lumière visible solaire absorbée par l'atmosphère, la terre et les océans, et la lumière infrarouge rayonnée par la Terre dans l'espace) se situe vers $+18°C$. qu'observerais-je si mes yeux n'étaient sensibles qu'aux longueurs d'onde proches de $\lambda_{moy}=100\mu m$ et si l'atmosphère n'était pas opaque à ces longueurs d'onde? Il existe une composante de matière, répandue dans tout l'espace, entre les étoiles. Appelée poussière interstellaire, cette composante est constitué de grains (mélanges solides de silicates, de matière carbonée et de glaces diverses) de tailles nanométriques (de l'ordre de 20 à 100 $\mu m$). Distribuée entre les étoiles, le ciel ne m'apparaitrait pas obscure, ponctué seulement par les étoiles et les planètes, mais sous la forme de vastes étendues lumineuses, comme des nuages, en directions des zones denses en poussières.
- De 30 degrés Kelvin ($30K$) à 3 degrés Kelvin ($3K$), la température chute encore d'un facteur 10, en de la matière en équilibre thermique à cette température émet son rayonnement à une longueur d'onde 10 fois plus grande, autour de $\lambda_{moy}=1\,mm$. Qu'observe-t-on de l'univers dans ce domaine de longueur d'onde? L'univers rayonne de façon dans toutes les direction et de façon très homogène comme un corps noir parfait à la température de ... $T=2.728\pm0.004\,K$. Ce rayonnement de corps noir quasi-parfait, appelé rayonnement cosmologique ou fond diffus cosmologique, est l'une des preuves très convaincantes du modèle du Big Bang.
D'autres types de sources de lumière visible émettent un spectre de raies plus ou moins larges. L'énergie de chaque photon émis correspond à la différence d'énergie entre un état de plus haute énergie et un état de plus basse énergie, entre lesquelles l'atome ou la molécule transite.
#### Sources secondaires de lumière : objets diffusants
! TODO
---
title: Objeto físico, fuente de luz
slug: objeto-fisico-fuente-de-luz
---
### Objeto físico, fuente de luz
!!! ¡ Ola !
Parmi les cinq sens de l'être humain (vue, ouïe, odorat, goût, toucher),
**la vue** est le _sens le plus développé_,
ce qui signifie que c'est le sens _qui nous donne le plus d'informations_ sur notre environnement.
Notre vision nous permet de localiser et de reconnaître des objets solides ou des étendues liquides
qui peuvent nous être utiles ou représenter un danger, des objets que nous voulons attraper ou bien éviter.
La vue nous permet de percevoir la présence et d'identifier ces objets à distance,
sans contact physique comme avec notre sens du toucher ou celui du goût.
Le **vecteur de l'information visuelle** sur la localisation, la nature et la forme de l'objet est
_la lumière émise ou diffusée par l'objet_ et qui atteint notre oeil.
<!-- à mettre en /M-->
- Deux autres de nos sens, l'ouïe et l'odorat, nous apportent aussi chacun une information à distance et sans contact, complémentaire de celle apportée par la vue. Le vecteur de l'information pour l'ouïe est le son produit par l'objet lui-même ou son déplacement, et pour l'odorat ce vecteur est le déplacement entre l'objet et nous des diverses molécules chimiques émises par l'objet et auxquelles notre odorat est sensible. D'autres espèces animales ont développé d'autres sens. Par exemple :
- dauphins et chauve-souris ont développé l'écholocalisation. En émettant des ultrasons qui seront réfléchis, et en percevant la direction et le retard temporelle de l'onde réfléchie en retour, ils arrivent à localiser et identifier les objets qui font obstacle à la libre propagation des ultra-sons.
- requins et raies ont développé au cours de l'évolution un sens qui les rends très sensible aux champs électriques créés par l'activité biologique (principalement les muscles) des autres espèces animales.
- La sensibilité au champ magnétique terrestre, qui en chaque endroit pointe dans une direction précise suivant les lignes de champ magnétique, contribue à l'orientation de nombreux oiseaux migrateurs au cours de leur longs voyages saisonniers.
Ce sont les contraintes environnementales locales, les types de ressources nutritives nécessaires et les relations entre proies et prédateurs, qui ont déterminés quels sens ont été les plus aptes pour chaque espèce à assurer sa propre survie. Ainsi les abeilles ont acquis en sens de l'odorat hyper développé pour localiser le nectar des fleurs nécessaire à la survie de la ruche. Les chauve-souris qui se déplacent la nuit et peuplent souvent des grottes ont développé particulièrement l'écholocalisation piur se situer dans leur environnement, là ou le hibou a développé un sens de la vue particulièrement sensible en faible luminosité. Les divers sens agissent de façon complémentaires pour apporter à chaque espèce toute l'information nécessaire à sa survie. La vue est sans conteste, bien que suivie de prêt par l'ouïe, le sens le plus important pour l'être humain. Sa faculté visuelle ... science et vie de juillet...</ul>
---
title: L'objet physique, source de lumière
slug: source-de-lumiere-objet-physique
---
### L'objet physique, source de lumière
Parmi les cinq sens de l'être humain (vue, ouïe, odorat, goût, toucher),
**la vue** est le _sens le plus développé_,
ce qui signifie que c'est le sens _qui nous donne le plus d'informations_ sur notre environnement.
Notre vision nous permet de localiser et de reconnaître des objets solides ou des étendues liquides
qui peuvent nous être utiles ou représenter un danger, des objets que nous voulons attraper ou bien éviter.
La vue nous permet de percevoir la présence et d'identifier ces objets à distance,
sans contact physique comme avec notre sens du toucher ou celui du goût.
Le **vecteur de l'information visuelle** sur la localisation, la nature et la forme de l'objet est
_la lumière émise ou diffusée par l'objet_ et qui atteint notre oeil.
<!-- à mettre en /M-->
- Deux autres de nos sens, l'_ouïe_ et l'_odorat_, nous apportent aussi chacun une information à distance et sans contact, complémentaire de celle apportée par la vue. Le vecteur de l'information pour l'ouïe est le son produit par l'objet lui-même ou son déplacement, et pour l'odorat ce vecteur est le déplacement entre l'objet et nous des diverses molécules chimiques émises par l'objet et auxquelles notre odorat est sensible. D'autres espèces animales ont développé d'autres sens. Par exemple :
- dauphins et chauve-souris ont développé l'écholocalisation. En émettant des ultrasons qui seront réfléchis, et en percevant la direction et le retard temporelle de l'onde réfléchie en retour, ils arrivent à localiser et identifier les objets qui font obstacle à la libre propagation des ultra-sons.
- requins et raies ont développé au cours de l'évolution un sens qui les rends très sensible aux champs électriques créés par l'activité biologique (principalement les muscles) des autres espèces animales.
- La sensibilité au champ magnétique terrestre, qui en chaque endroit pointe dans une direction précise suivant les lignes de champ magnétique, contribue à l'orientation de nombreux oiseaux migrateurs au cours de leur longs voyages saisonniers.
Ce sont les contraintes environnementales locales, les types de ressources nutritives nécessaires et les relations entre proies et prédateurs, qui ont déterminés quels sens ont été les plus aptes pour chaque espèce à assurer sa propre survie. Ainsi les abeilles ont acquis en sens de l'odorat hyper développé pour localiser le nectar des fleurs nécessaire à la survie de la ruche. Les chauve-souris qui se déplacent la nuit et peuplent souvent des grottes ont développé particulièrement l'écholocalisation piur se situer dans leur environnement, là ou le hibou a développé un sens de la vue particulièrement sensible en faible luminosité. Les divers sens agissent de façon complémentaires pour apporter à chaque espèce toute l'information nécessaire à sa survie. La vue est sans conteste, bien que suivie de prêt par l'ouïe, le sens le plus important pour l'être humain. Sa faculté visuelle ... science et vie de juillet...</ul>
#### Sources primaires de lumière
Toute matière émet de la lumière, principalement en fonction de sa température selon la loi du corps noir. Cependant ce type de rayonnement thermique propre à chaque objet n'émet dans le visible que pour des températures de plusieurs centaines de degrés au minimum. Notre oeil est sensible à la lumière émise par ces objets très chauds émettant ce type de rayonnement, ce sont les anciennes ampoules électriques à incandescence, c'est le morceau de métal porté à plus de 800°C qui devient rougissant, et c'est bien sûr et surtout le soleil dont la température de surface est proche de $5800K$. Chaque élément de surface de ces objets très chauds émet une lumière visible dans toutes les directions du demi-espace libre situé devant lui.
<!-- à mettre en /F ou/et /M-->
- Le domaine de sensibilité de la vision humaine correspond aux ondes électromagnétiques de longueurs d'onde $\lambda\in[400nm, 780nm]$, soit une longueur d'onde moyenne de $\lambda_{moy}=500\mu m$. En vertu de la loi de Wien, le soleil dont la température de surface est de 6000 degrés Kelvin ($6000K$), le soleil émet avec un maximum d'intensité à la longueur d'onde de $\lambda=500nm$, longueur d'onde à laquelle l'atmosphère terrestre est également transparente, permettant à cette lumière de parvenir jusqu'au sol. Tout ceci n'est sûrement pas étranger au fait que au cours de l'évolution, l'oeil biologique se soit principalement adapté pour être sensible à cette gamme de longueurs d'onde que l'on nomme le domaine visible. Le domaine visible est défini par rapport au domaine de sensibilité de l'oeil humain, soit $\lambda\in[400nm, 780nm]$. Le domaine de sensibilité des diverses espèces animales peuvent varier légèrement, parfois en s'étendant au tout proche ultraviolet, parfois au tout proche infrarouge. Mais dans la vie en générale, la vision reste centrée sur le domaine $\lambda\in[250nm, 1000nm]$, qui correspond au domaine de maximum d'intensité de la lumière solaire, et à un domaine de transparence de l'atmosphère terrestre.
- Si le soleil avait été ce qui est appelé une naine rouge, c'est à dire une étoile dont la température de surface est plus froide, de l'ordre de 3000 degrés Kelvin ($3000K$), selon la loi de Wien le maximum d'émission de l'étoile se réaliserait à une longueur d'onde moyenne double, soit $\lambda_{moy}=1\mu m$. Notre oeil étant peu sensible à cette longueur d'onde, nous apparaitraient le soleil d'un rouge bien pâle et le jour bien sombre.</li><br>
- Mon propre corps est à la température de 37°C, soit environ 300 degrés Kelvin ($300K$), soit 10 fois moins que la température de surface de l'étoile naine rouge précédente. Comme toue matière (assemblage de particules chargées liées entre elles et en mouvement) je rayonne, mais avec un maximum d'intensité situé à une longueur d'onde 10 fois plus grandes, au voisinage de $\lambda_{moy}=10\mu m$. Les lunettes permettant de me voir la nuit grâce à ma propre émission thermique utilisent soit des amplificateurs de lumières visibles (mais il faut qu'il reste un peu de lumière visible que ma peau et mes vêtements puissent diffuser), soit des capteurs de rayonnement sensibles à la longueur d'onde moyenne de $`\lambda_{moy}=10\mu m`$.
- Je descends encore la température de la matière d'un facteur 10, et j'obtiens une température de 30 degrés Kelvin ($30K$). le rayonnement thermique d'un corps à cette température présente un maximum d'intensité à la longueur d'onde de $`\lambda_{moy}=100\mu m`$. La température de ($30K$) , exprimée en degré celsius, correspond à une température d'environ $-240°C$. Aucune température naturelle aussi basse n'est observée sur la Terre, dont la température moyenne (résultant de l'équilibre entre la lumière visible solaire absorbée par l'atmosphère, la terre et les océans, et la lumière infrarouge rayonnée par la Terre dans l'espace) se situe vers $+18°C$. qu'observerais-je si mes yeux n'étaient sensibles qu'aux longueurs d'onde proches de $\lambda_{moy}=100\mu m$ et si l'atmosphère n'était pas opaque à ces longueurs d'onde? Il existe une composante de matière, répandue dans tout l'espace, entre les étoiles. Appelée poussière interstellaire, cette composante est constitué de grains (mélanges solides de silicates, de matière carbonée et de glaces diverses) de tailles nanométriques (de l'ordre de 20 à 100 $\mu m$). Distribuée entre les étoiles, le ciel ne m'apparaitrait pas obscure, ponctué seulement par les étoiles et les planètes, mais sous la forme de vastes étendues lumineuses, comme des nuages, en directions des zones denses en poussières.
- De 30 degrés Kelvin ($30K$) à 3 degrés Kelvin ($3K$), la température chute encore d'un facteur 10, en de la matière en équilibre thermique à cette température émet son rayonnement à une longueur d'onde 10 fois plus grande, autour de $\lambda_{moy}=1\,mm$. Qu'observe-t-on de l'univers dans ce domaine de longueur d'onde? L'univers rayonne de façon dans toutes les direction et de façon très homogène comme un corps noir parfait à la température de ... $T=2.728\pm0.004\,K$. Ce rayonnement de corps noir quasi-parfait, appelé rayonnement cosmologique ou fond diffus cosmologique, est l'une des preuves très convaincantes du modèle du Big Bang.
D'autres types de sources de lumière visible émettent un spectre de raies plus ou moins larges. L'énergie de chaque photon émis correspond à la différence d'énergie entre un état de plus haute énergie et un état de plus basse énergie, entre lesquelles l'atome ou la molécule transite.
#### Sources secondaires de lumière : objets diffusants
!!! TODO
---
title: chap1_1_1_Page_title_lecons_colonnes
---
### chap1_1_1_Page_title_lecons_colonnes.fr
Tenait en son bec un fromage.
Maître Renard, par l'odeur alléché,
Lui tint à peu près ce langage :
Et bonjour, Monsieur du Corbeau.
Que vous êtes joli ! que vous me semblez beau !
Sans mentir, si votre ramage
Se rapporte à votre plumage,
Vous êtes le Phénix des hôtes de ces bois.
À ces mots, le Corbeau ne se sent pas de joie ;
Et pour montrer sa belle voix,
Il ouvre un large bec, laisse tomber sa proie.
Le Renard s'en saisit, et dit : Mon bon Monsieur,
Apprenez que tout flatteur
Vit aux dépens de celui qui l'écoute.
Cette leçon vaut bien un fromage, sans doute.
Le Corbeau honteux et confus
Jura, mais un peu tard, qu'on ne l'y prendrait plus.
\ No newline at end of file
# This page configuration is shared by all locales, in this directory.
# You can override it in the individual frontmatter of the pages.
content:
# https://learn.getgrav.org/15/content/collections#summary-of-collection-options
items: @self.children
---
title: Optics
slug: optics
---
---
title: Óptica
slug: optics
---
---
title: Optique
slug: optique
---
\ No newline at end of file
# This page configuration is shared by all locales, in this directory.
# You can override it in the individual frontmatter of the pages.
content:
# https://learn.getgrav.org/15/content/collections#summary-of-collection-options
items: @self.children
anchors:
active: false
\ No newline at end of file
---
title: Courses
published: false
slug: courses
visible: false
---
## Topics
\ No newline at end of file
---
title: Cursus
slug: cours
visible: false
---
## Thèmes
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment