Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
a35dc6d3
Commit
a35dc6d3
authored
Dec 18, 2021
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.es.md
parent
892a49f0
Pipeline
#10289
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
3 additions
and
3 deletions
+3
-3
textbook.es.md
12.temporary_ins/98.demo-conversion/exercices/textbook.es.md
+3
-3
No files found.
12.temporary_ins/98.demo-conversion/exercices/textbook.es.md
View file @
a35dc6d3
...
...
@@ -104,7 +104,7 @@ $`\overrightarrow{v} = 3.f \left( t \right).\overrightarrow{e_x} + 5.g\left( t \
height="2.6527777777777777in"}-->
Un punto M en un sistema de coordenadas
$`
\m
athcal{R}
`$ $`
{
(O,
\o
verrightarrow{e_{x}},
\o
verrightarrow{e_{y}}
`$)
$`
\m
athcal{R}
`$ $`
(O,
\o
verrightarrow{e_{x}},
\o
verrightarrow{e_{y}}
`$)
describe un movimiento circular. La posición del punto M esta descrita
por el ángulo $`
\t
heta(t)
`$ entre el eje $`
Ox
`$ y el vector
$\overrightarrow{\text{OM}}$ (ver figura). El rayo del círculo tiene el
...
...
@@ -119,9 +119,9 @@ valor $`r`$.
2. Estudiar el movimiento en $\mathcal{R}$. Derivar el vector
$`
\o
verrightarrow{OM}
`$ respecto al tiempo y calcular la
expresión del vector velocidad
$`
\o
verrightarrow{v}_{M
\m
athcal{
/
R}}
`$ respecto de la base
$`
\o
verrightarrow{v}_{M
\m
athcal{R}}
`$ respecto de la base
$`
\l
eft(
\o
verrightarrow{e_x},
\o
verrightarrow{e_y}
\r
ight)
`$, en fonction de
$`
r
`$ et $`
\t
heta(t)
`$ y $`
\d
frac{d
\t
heta (t)}{dt}$. Efectuar el
$`
r
`$ et $`
\t
heta(t)
`$ y $`
\d
frac{d
\t
heta (t)}{dt}
`
$. Efectuar el
mismo cálculo utilizando la base
$`
\l
eft(
\o
verrightarrow{e_{
\r
ho}},
\o
verrightarrow{e_{
\t
heta}}
\r
ight)
`$.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment