Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
a995537f
Commit
a995537f
authored
May 27, 2021
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update textbook.fr.md
parent
55ed5455
Pipeline
#8971
failed with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
4 deletions
+14
-4
textbook.fr.md
..._ins/06.geometry-coordinates/40.n4/10.main/textbook.fr.md
+14
-4
No files found.
12.temporary_ins/06.geometry-coordinates/40.n4/10.main/textbook.fr.md
View file @
a995537f
...
...
@@ -167,16 +167,26 @@ coordonnées, dont la valeur est indépendante dans tout système de coordonnée
unité d'invariant.
!!! *Exemples* :
!!! *
Dans l'espace intuitif, euclidien et tridimensionnel décrit en physique classique, l'invariant
!!!
est la distance euclidienne notée $`
dl
`$ telle que $`
dl^2=dx^2+dy^2+dz^2
`$. Un système de coordonnée
!!! où l'invariant prend cette forme est dit cartésien.
!!! *
*Si la variété est l'espace intuitif, euclidien et tridimensionnel* décrit en physique classique,
!!!
*l'invariant est la distance euclidienne* notée $`
dl
`$ telle qu'en tout point de l'espace $`
dl^2=dx^2+dy^2+dz^2
`$.
!!!
Un système de coordonnée
où l'invariant prend cette forme est dit cartésien.
!!! Il existe d'autres systèmes de coordonnées, non cartésiens, dans lequel cet invariant a une forme différente :
!!! \- en coordonnées cylindriques $`
(
\r
ho,
\v
arphi,z)
`$ l'invariant distance euclidienne s'écrit
!!! $`
dl^2=
\r
ho^2+
\r
ho^2
\c
dot d
\v
arphi^2+dz^2
`$.
!!! \- en coordonnées sphérique $`
(r,
\t
heta,
\v
arphi)
`$ l'invariant distance euclidienne s'écrit
!!! $`
dl^2=r^2+r^2
\c
dot d
\t
heta^2+ r^2
\s
in^2
\t
heta z^2
`$.
!!! Mais quelque-soit le système de coordonnée utilisé avec une même unité de mesure, l'invariant distance euclidienne
a toujours la même valeur.
!!! a toujours la même valeur.
!!!
!!! * Si *la variété est la surface bidimensionnelle (2D) d'une sphère non plongée
!!! dans un espace tridimensionnel*, l'invariant est tel qu'en tout point de la sphère
!!! $`
ds^2=
`$, où en tout point $`
M
`$, localement $`
(M,x,y)
`$ est un système d'axes orthonormé (non cartésien).
!!! Dans cette variété, il n'existe pas de système de coordonnées $`
(M,x,y)
`$ où l'invariant vérifierait
!!! $`
ds^2=
\r
ho^2+
\r
ho^2
\c
dot d
\v
arphi^2+dz^2
`
$. Cette variété n'admet pas de coordonnées cartésiennes, cette variété
!!! n'est pas euclidienne.
!!!
!!!
* Si *
la variété est la surface bidimensionnelle (2D) d'une cylindre infini non plongé
!!! dans un espace tridimensionnel
*
, ...
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment