Commit af3ae502 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 9b774ee4
Pipeline #17591 canceled with stage
...@@ -114,10 +114,12 @@ RÉSUMÉ ...@@ -114,10 +114,12 @@ RÉSUMÉ
$`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Flux) $`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Flux)
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &div\,\overrightarrow{B} = 0\\ $`\color{blue}{\scriptsize{\quad\quad
&div\,\overrightarrow{U}=0\quad\Longleftrightarrow\quad\exist\overrightarrow{V}\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}\end{align} div\,\overrightarrow{U}=0\quad\Longleftrightarrow\quad\exists\overrightarrow{V}
\right\}\Longrightarrow\\ \,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}}}`$
\exists\overrightarrow{A}\,,\, \overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}}}`$
$`\exists\overrightarrow{A}
\,,\, \overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}}}`$
<!------------- <!-------------
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\ $`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &cos(a+b)=cos(a)cos(b)-sin(a)sin(b)\\
...@@ -125,15 +127,23 @@ $`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Flux) ...@@ -125,15 +127,23 @@ $`div\,\overrightarrow{B} = 0\quad`$ (Maxwell-Flux)
\right\}\Longrightarrow\\ \right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\ \quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$ \quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
$`\color{blue}{\scriptsize{\left.\begin{align} \quad\quad &div\,\overrightarrow{B} = 0\\
&div\,\overrightarrow{U}=0\quad\Longleftrightarrow\quad\exist\overrightarrow{V}\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}\end{align}
\right\}\Longrightarrow\\
\exists\overrightarrow{A}\,,\, \overrightarrow{B}=\overrightarrow{rot}\,\overrightarrow{A}}}`$
$`\overrightarrow{rot}\,\overrightarrow{U}=\overrightarrow{0}\quad\Longleftrightarrow\quad\exists\phi\,,\, \overrightarrow{U}=\overrightarrow{grad}\,\phi`$
$`div\,\overrightarrow{U}=0\quad\Longleftrightarrow\quad\exists\phi\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}`$
--------------> -------------->
$`\overrightarrow{rot}\,\overrightarrow{U}=\overrightarrow{0}\quad\Longleftrightarrow\quad\exists\phi\,,\, \overrightarrow{U}=\overrightarrow{grad}\,\phi`$ $`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}\quad`$(Maxwell-Faraday)
$`\quad\quad=-\dfrac{\partial \big(\overrightarrow{rot}\,\overrightarrow{A}\big)}{\partial t}`$
$`div\,\overrightarrow{U}=0\quad\Longleftrightarrow\quad\exists\phi\,,\, \overrightarrow{U}=\overrightarrow{rot}\,\overrightarrow{V}`$
$`\overrightarrow{rot}\,\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}
=-\dfrac{\partial \big(\overrightarrow{rot}\,\overrightarrow{A}\big)}{\partial t}
=-\overrightarrow{rot}\,\dfrac{\partial \overrightarrow{A}}{\partial t}`$
$`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A} $`\Longrightarrow \overrightarrow{rot}\,\left(\overrightarrow{E}+\dfrac{\partial \overrightarrow{A}
}{\partial t}\right)=\overrightarrow{0}`$ }{\partial t}\right)=\overrightarrow{0}`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment