Commit b4a4f5a1 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent a131a38b
Pipeline #13231 canceled with stage
...@@ -510,6 +510,7 @@ x* La **circulation de la force conservative** s'exerçant sur un corpuscule de ...@@ -510,6 +510,7 @@ x* La **circulation de la force conservative** s'exerçant sur un corpuscule de
$`\begin{align} $`\begin{align}
\displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_X\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\ \displaystyle\color{brown}{\large{\mathbf{\displaystyle\int_A^B\overrightarrow{F}_X\cdot\overrightarrow{dl}}}} & =\int_A^B \alpha\,\overrightarrow{X}\cdot\overrightarrow{dl}\\
& =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\ & =\int_A^B \alpha\,\big(-\,\overrightarrow{grad}\,\phi_X\big) \cdot\overrightarrow{dl} \\
& =-\displaystyle\,\int_A^B \alpha\,\underbrace{\big(\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}\big)}_{=\;d\phi\;,\text{ dfn de } \overrightarrow{grad}\,\phi}\\
& =-\,\int_A^B \alpha\;d\phi_X \\ & =-\,\int_A^B \alpha\;d\phi_X \\
& =-\,\int_A^B \mathcal{E}_X^{pot} \\ & =-\,\int_A^B \mathcal{E}_X^{pot} \\
\\ \\
...@@ -517,10 +518,7 @@ $`\begin{align} ...@@ -517,10 +518,7 @@ $`\begin{align}
\\ \\
& \color{blue}{\large{\mathbf{\;=-\;\overset{B}{\underset{A}{\Large{\Delta}}}(\mathcal{E}_X^{pot})}}}\\ & \color{blue}{\large{\mathbf{\;=-\;\overset{B}{\underset{A}{\Large{\Delta}}}(\mathcal{E}_X^{pot})}}}\\
\end{align}`$ \end{align}`$
<br>
$`=-\displaystyle\,\int_A^B \alpha\,\big(\underbrace{\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}}_{=\;d\phi\;,\text{ dfn de } \overrightarrow{grad}\,\phi}\big)`$
<br>
$`=-\displaystyle\,\int_A^B \alpha\,\underbrace{\big(\overrightarrow{grad}\,\phi_X\cdot\overrightarrow{dl}\big)}_{=\;d\phi\;,\text{ dfn de } \overrightarrow{grad}\,\phi}`$
#### Qu'est-ce que la circulation d'un champ vectoriel le long d'un chemin ? #### Qu'est-ce que la circulation d'un champ vectoriel le long d'un chemin ?
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment