_figure temporaire à réviser : corriger_ $`\vec{e_r}`$ _en_ $`\vec{e_{\rho}}`$. _Remplacer_ $`\mathscr{P}_2`$ _par_ $`\mathscr{P}_0`$. _En effet, pour le point suivant, nous réserverons la notation_ $`\mathscr{P}_i`$ _avec_ $`i\in\mathbb{N}^*`$ _aux plans contenant l'axe_ $`Oz`$. _Rajouter la notation $`\Delta`$ pour l'axe_ $`Oz`$.
***$`\overrightarrow{E}`$** est un *vecteur polaire*.
**$`\mathbf{\mathcal{P}_1=}`$***$`\mathbf{\mathcal{P}_1\,(M, \overrightarrow{e_{\rho}}, \overrightarrow{e_z})}`$** est *plan de symétrie* pour $`\dens`$.
**$`\mathbf{\mathcal{P}_2=}`$***$`\mathbf{\mathcal{P}_2\,(M, \overrightarrow{e_{\varphi}}, \overrightarrow{e_{\rho}})}`$** est *plan de symétrie* pour $`\dens`$.
* $`\mathbf{\mathcal{S}_G}`$ surface fermée se décompose en **$`\mathbf{\mathcal{S}_G=\mathcal{S}_{dis1}+\mathcal{S}_{lat}+\mathcal{S}_{dis2}}`$** avec :
***$`\mathbf{\mathcal{S}_{dis1}}`$** : *disque supérieur* d'élément vectoriel de surface **$`\mathbf{\overrightarrow{dS}=+\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
***$`\mathbf{\mathcal{S}_{dis1}}`$** : *disque supérieur* d'élément vectoriel de surface **$`\mathbf{\overrightarrow{dS}=+\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
***$`\mathbf{\mathcal{S}_{lat}}`$** : *surface latérale* tel que **$`\mathbf{\overrightarrow{dS}=+\rho_M\,d\varphi\,dz\,\overrightarrow{e_{\rho}}}`$**, tous les $` \overrightarrow{dS}`$ étant ici situés à la même distance $`\rho=\rho_M`$ de l'axe de révolution du cylindre.
***$`\mathbf{\mathcal{S}_{lat}}`$** : *surface latérale* tel que **$`\mathbf{\overrightarrow{dS}=+\rho_M\,d\varphi\,dz\,\overrightarrow{e_{\rho}}}`$**, tous les $` \overrightarrow{dS}`$ étant ici situés à la même distance $`\rho=\rho_M`$ de l'axe de révolution du cylindre.
***$`\mathbf{\mathcal{S}_{dis2}}`$** : *disque inférieur* tel que **$`\mathbf{\overrightarrow{dS}=-\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
***$`\mathbf{\mathcal{S}_{dis2}}`$** : *disque inférieur* tel que **$`\mathbf{\overrightarrow{dS}=-\rho\,d\varphi\,d\rho\,\overrightarrow{e_z}}`$**, $`\rho`$ variant de $`0`$ à $`\rho_M`$ pour couvrir la surface du disque.
* $`\Phi_E^{\mathcal{S}_G}= 2\pi \rho_M\,h\, E`$ , avec $`\Phi_E`$ le flux de $`\overrightarrow{E}`$ à travers $`{\mathcal{S}_G}`$
sont *commun à toutes les distributions* de charge à symétrie cylindrique invariantes par translation selon $`Oz`$.
* Le **calcul de $`Q_{int}`$** puis **de $`\overrightarrow{E}`$** nécessitent de *connaître l'expression mathématique pour $`\dens`$* en chaque point de l'espace.
* Le **calcul de $`Q_{int}`$** puis **de $`\overrightarrow{E}`$** nécessitent de *connaître l'expression mathématique pour $`\dens`$* en chaque point de l'espace.
<br>
$`\Longrightarrow`$ *différentes distributions de charge sont étudiées* dans la suite.
...
...
@@ -200,7 +200,7 @@ $`\Longrightarrow`$ *différentes distributions de charge sont étudiées* dans
* $`Q_{int}`$ est la **charge contenue à l'intérieur de $`\mathbf{\mathcal{S}_G}`$**.
***$`\displaystyle\mathbf{Q_{int}=\iiint_{\Ltau_G \rightarrow\mathcal{S}_G} \dens\; d\tau}`$**, avec :
***$`\displaystyle\mathbf{Q_{int}=\iiint_{\Ltau_G \rightarrow\mathcal{S}_G} \dens\; d\tau}`$**, avec :
***$`\mathbf{\tau_G}`$***volume intérieur* à $`\mathbf{\mathcal{S}_G}`$.
***$`\mathbf{d\tau}`$** est l'*élément de volume*.
...
...
@@ -208,10 +208,10 @@ $`\Longrightarrow`$ *différentes distributions de charge sont étudiées* dans
* Il *résulte de la synthèse des résultats* précédents.
* L'**égalité entre les deux termes** du théorème de Gauss *donne la composante $`E`$* du champ $`\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}`$ en tout point de l'espace :
* L'**égalité entre les deux termes** du théorème de Gauss *donne la composante $`E`$* du champ $`\overrightarrow{E}=E\;\overrightarrow{e_{\rho}}`$ en tout point de l'espace :
**$`\mathbf{=\dfrac{1}{\epsilon_0}}`$***$`\,Q_{int}`$***$`\quad\Longrightarrow\mathbf{\text{ expression de }E}`$**.
**$`\mathbf{=\dfrac{1}{\epsilon_0}}`$***$`\,Q_{int}`$***$`\quad\Longrightarrow\mathbf{\text{ expression de }E}`$**.
<br>
Ne pas oublier le terme $`\dfrac{1}{\epsilon_0}`$.
...
...
@@ -219,7 +219,7 @@ Ne pas oublier le terme $`\dfrac{1}{\epsilon_0}`$.
<!--===============pour partie principale?==============
* Les symétries et invariances de $`\dens`$ ont donné en tout point $`M=M\,(\rho, \varphi, z)`$ de l'espace la direction de $`\overrightarrow{E}`$ sous la forme d'une amplitude $`E`$ et du vecteur unitaire $`\overrightarrow{e_{\rho}}`$ :
* Les symétries et invariances de $`\dens`$ ont donné en tout point $`M=M\,(\rho, \varphi, z)`$ de l'espace la direction de $`\overrightarrow{E}`$ sous la forme d'une amplitude $`E`$ et du vecteur unitaire $`\overrightarrow{e_{\rho}}`$ :
* Nombre de sous-espaces complémentaires à prendre en compte : 2
...
...
@@ -285,7 +285,7 @@ apparaît au-dessus lorsqu'elle est positive.
<!--Cela peu paraître inutile car évident pour les professeurs, mais leurs cerveaux ont eu des années pour intégrer cela. La non conscience qu'il faille considérer différents cas selon la position du point M pour le calcul de $`Q_{int}`$ (que cela soit par manque de visualisation ou sous l'effet du stress d'un examen) est une cause non négligeable d'erreurs. D'où la volonté ici d'emphaser ce point en parlant de sous-espaces.--->
@@ -297,19 +297,19 @@ _figure temporaire à réviser._
<br>
**$`\large\text{Pour }\mathbf{\rho_M\le R}`$** :
* Le *point $`M`$ quelconque* est situé **à l'intérieur** du cylindre chargé.
* Le *point $`M`$ quelconque* est situé **à l'intérieur** du cylindre chargé.
<br>
$`\Longrightarrow`$ le **volume de Gauss $`\Ltau_G`$** associé est *entièrement contenue dans l'espace $`\mathscr{E}_{int}`$* caractérisé par la *densité de charge constante $`\dens_0^{3D}`$*.
_Le volume de gauss est entièrement caractérisée par même expression de densité de charge constante_ $`\dens^{3D}_0`$. _Corriger_ $`\vec{e_r}`$ _en_ $`\vec{e_{\rho}}`$.
* *Représentation graphique de $` Q_{int}(\rho)`$* :
* *Représentation graphique de $` Q_{int}(\rho)`$* :
<br>
Dans le **même esprit que précédemment**, nous traçons la charge totale dans le volume de Gauss $`Q_{int}(\rho)`$ divisée par la valeur maximale de sa valeur absolue" $`|Q_{int}|_{max}`$.
* *$`\dens^{3D}`$ est fonction de $`\rho`$*, donc tous les $`d\Ltau`$ ne sont pas caractérisés par une valeur unique de $`\dens^{3D}`$
$`\Longrightarrow\dens^{3D}_0`$ *ne peut pas sortir de l'intégrale*.
$`\Longrightarrow`$ l'élément de volume $`d\Ltau`$ doit prendre son expression *en coordonnées cylindriques* $`\mathbf{d\Ltau=\rho\,d\varphi\,d\rho\,dz}`$ :
* *$`\dens^{3D}`$ est fonction de $`\rho`$*, donc tous les $`d\Ltau`$ ne sont pas caractérisés par une valeur unique de $`\dens^{3D}`$
$`\Longrightarrow\dens^{3D}_0`$ *ne peut pas sortir de l'intégrale*.
$`\Longrightarrow`$ l'élément de volume $`d\Ltau`$ doit prendre son expression *en coordonnées cylindriques* $`\mathbf{d\Ltau=\rho\,d\varphi\,d\rho\,dz}`$ :
* Le point $`M`$ est situé à l'extérieur du cylindre.
* Le point $`M`$ est situé à l'extérieur du cylindre.
<br>
$`\Longrightarrow`$ le **volume de Gauss $`\Ltau_G`$** *intercepte les sous-espaces* $`\mathscr{E}_{int}`$, $`\mathscr{E}_{mil}`$* et $`\mathscr{E}_{ext}`$*.
$`\Longrightarrow`$ le **volume de Gauss $`\Ltau_G`$** *intercepte les sous-espaces* $`\mathscr{E}_{int}`$, $`\mathscr{E}_{mil}`$* et $`\mathscr{E}_{ext}`$*.
On retrouve naturellement les résultats précédents.
...
...
@@ -811,21 +811,21 @@ On retrouve naturellement les résultats précédents.
* Dans cet exemple, la distribution réelle de charge est modélisée par une **densité superficielle de charge $`\mathbf{\dens^{2D}}`$**.
* Faire le lien avec le cas précédent, étudier la **transition entre** :
\- une **distribution réelle 3D** de charge *dans un cylindre creux de faible épaisseur $`e`$*$`=R_{ext}-R_{int}`$.
\- sa **modélisation 2D** par une distribution $`\dens^{2D}`$ *lorsque l'épaisseur $`e`$ est négligée*.
* Montrer, si besoin était, que les **relations de continuité de $`\mathbf{\overrightarrow{E}}`$** à la traversée d'une surface chargée est la même que la surface chargée soit cylindrique ou plane (faire afficher les trois types de distributions en parallèle). Elles sont **les mêmes à la traversée de toute surface**, *plane ou courbe*.
* Faire le lien avec le cas précédent, étudier la **transition entre** :
\- une **distribution réelle 3D** de charge *dans un cylindre creux de faible épaisseur $`e`$*$`=R_{ext}-R_{int}`$.
\- sa **modélisation 2D** par une distribution $`\dens^{2D}`$ *lorsque l'épaisseur $`e`$ est négligée*.
* Montrer, si besoin était, que les **relations de continuité de $`\mathbf{\overrightarrow{E}}`$** à la traversée d'une surface chargée est la même que la surface chargée soit cylindrique ou plane (faire afficher les trois types de distributions en parallèle). Elles sont **les mêmes à la traversée de toute surface**, *plane ou courbe*.
_schéma simplifié du profil vu en coupe à venir_
##### Description de $`\dens`$ :
***$`\quad\left\{\begin{array}{l}
\rho\lt R \Longrightarrow \dens^{3D}(\rho) = 0 \\
\rho = R \Longrightarrow \dens^{2D}(\rho)=\dens^{2D}_0=cst \ne 0 \\
\rho\gt R \Longrightarrow \dens^{3D}(\rho) = 0
\end{array}\right.`$**
\rho\gt R \Longrightarrow \dens^{3D}(\rho) = 0
\end{array}\right.`$**
<!-------------
* Nombre de sous-espaces à prendre en compte : 2
...
...
@@ -834,8 +834,8 @@ _schéma simplifié du profil vu en coupe à venir_
à développer et terminer
montrer discontinuité de $`\overrightarrow{E}`$ à la traversée d'une surface chargée, due
au passage 3D vers idéalisation 2D : cela aura déjà été vu juste avant dans distribution de charge a symétrie plane, faire le lien.
montrer discontinuité de $`\overrightarrow{E}`$ à la traversée d'une surface chargée, due
au passage 3D vers idéalisation 2D : cela aura déjà été vu juste avant dans distribution de charge a symétrie plane, faire le lien.
Cette discontinuité de $`\overrightarrow{E}`$ en $`\rho=R`$ fait que le champ n'est pas défini en $`\rho=R`$ dans cette modélisation, dans cette idéalisation 2D, ce qui justifie de n'avoir considéré que les deux sous-espaces $`\mathscr{E}_{int}`$ et $`\mathscr{E}_{ext}`$.
------>
...
...
@@ -853,8 +853,8 @@ _figure de l'amplitude du champ électrique en fonction de_ $`\rho`$ _à venir_
C'est l'un des cas simples résolus par le calcul direct.