Commit bd567743 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent 43af3609
Pipeline #16242 canceled with stage
......@@ -237,39 +237,43 @@ $`\Longrightarrow\quad\overrightarrow{dl} \cdot \overrightarrow{B}=0`$
* Si **$`\mathbf{\;\overrightarrow{dl}_{DA}=+\,dz\,\overrightarrow{e_z}}`$** :
<br><br>
**$`\mathbf{\oint_{\Gamma_A}\overrightarrow{B}\cdot\overrightarrow{dl}}`$**
$`\displaystyle\,=\int_{DA} \overrightarrow{B}(\rho_{DA})\cdot\overrightarrow{dl}_{DA} + \int_{AB} \underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{AB}}_{\color{blue}{\quad\;=\,0\\car\,\vec{B}\,\perp\,\vec{dl}_{AB}}}`$
$`\displaystyle\quad\quad\quad\quad +\int_{BC} \underbrace{\overrightarrow{B}(\rho_{BC})}_{\color{blue}{=\,0}}\cdot\overrightarrow{dl}_{BC} + \int_{CD}\underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{CD}}_{\color{blue}{\quad\;=\,0\\car\,\vec{B}\,\perp\,\vec{dl}_{CD}}}`$
<br>
$`\color{blue}{\scriptsize{\quad\quad\quad\quad\text{En se rappellant que :}}}`$
$`\color{blue}{\scriptsize{\quad\quad\quad\quad\text{invariances + symétries }\Longrightarrow \vec{B}=B_z(\rho)\,\vec{e_z}}}`$
$`\displaystyle\quad\quad=\int_{DA} \overrightarrow{B}(\rho_{DA})\cdot\overrightarrow{dl}_{DA} + \int_{AB} \underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{AB}}_{\color{blue}{\quad\;=\,0\\car\,\vec{B}\,\perp\,\vec{dl}_{AB}}}`$
$`\displaystyle\quad\quad\quad +\int_{BC} \underbrace{\overrightarrow{B}(\rho_{BC})}_{\color{blue}{=\,0}}\cdot\overrightarrow{dl}_{BC} + \int_{CD}\underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{CD}}_{\color{blue}{\quad\;=\,0\\car\,\vec{B}\,\perp\,\vec{dl}_{CD}}}`$
<br>
$`\displaystyle\quad\quad\quad\quad = \int_{DA}\big(B_z(\rho_{DA})\overrightarrow{e_z}\big)\cdot\big(dz\,\overrightarrow{e_z}\big)`$
$`\quad\quad\color{blue}{\scriptsize{\quad\text{En se rappellant que :}}}`$
$`\quad\quad\color{blue}{\scriptsize{\quad\text{invariances + symétries }\Longrightarrow \vec{B}=B_z(\rho)\,\vec{e_z}}}`$
<br>
$`\color{blue}{\scriptsize{\quad\quad\quad\quad\text{Le sens de parcours est indiqué}}}`$
$`\color{blue}{\scriptsize{\quad\quad\quad\quad\text{par l'ordre des bornes d'intégration}}}`$
$`\quad\quad\displaystyle = \int_{DA}\big(B_z(\rho_{DA})\,\overrightarrow{e_z}\big)\cdot\big(dz\,\overrightarrow{e_z}\big)`$
<br>
$`\displaystyle\quad\quad\quad\quad = \int_{z=z_0}^{z=z_0+h} B_z(\rho_{DA})\,dz`$
$`\quad\quad\displaystyle = \int_{DA}\;B_z(\rho_{DA})\,\big(\overrightarrow{e_z}\cdot\overrightarrow{e_z}\big)\,dz`$
<br>
$`\displaystyle\quad\quad\quad\quad = \Big[ B_z(\rho_{DA})\times z\Big]_{z_0}^{z_0+h}`$
$`\quad\quad\color{blue}{\scriptsize{\quad\text{Le sens de parcours est indiqué}}}`$
$`\quad\quad\color{blue}{\scriptsize{\quad\text{par l'ordre des bornes d'intégration}}}`$
<br>
$`\color{blue}{\scriptsize{\quad\quad\quad\quad M\in [DA]\;\Longrightarrow \;\rho_{DA}=\rho_M}}`$
$`\quad\quad\displaystyle = \int_{z=z_0}^{z=z_0+h} B_z(\rho_{DA})\,dz`$
<br>
**$`\displaystyle\quad\quad\quad\quad\mathbf{\boldsymbol{ = h\; B_z(\rho_M)}}`$**
$`\quad\quad\displaystyle = \Big[ B_z(\rho_{DA})\times z\Big]_{z_0}^{z_0+h}`$
<br>
$`\quad\quad\color{blue}{\scriptsize{\quad M\in [DA]\;\Longrightarrow \;\rho_{DA}=\rho_M}}`$
<br>
**$`\quad\quad\displaystyle\mathbf{\boldsymbol{ = h\; B_z(\rho_M)}}`$**
<br>
* De même, si i *$`\mathbf{\;\overrightarrow{dl}_{DA}=-\,dz\,\overrightarrow{e_z}}`$* :
<br><br>
*$`\mathbf{\oint_{\Gamma_A}\overrightarrow{B}\cdot\overrightarrow{dl}}`$*
$`\displaystyle\,=\int_{DA} \overrightarrow{B}(\rho_{DA})\cdot\overrightarrow{dl}_{DA} + \int_{AB} \underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{AB}}_{\color{blue}{\quad\;=\,0}}`$
$`\displaystyle\quad\quad\quad\quad +\int_{BC} \underbrace{\overrightarrow{B}(\rho_{BC})}_{\color{blue}{=\,0}}\cdot\overrightarrow{dl}_{BC} + \int_{CD}\underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{CD}}_{\color{blue}{\quad\;=\,0}}`$
<br>
$`\displaystyle\quad\quad\quad\quad = \int_{DA}\big(B_z(\rho_{DA})\overrightarrow{e_z}\big)\cdot\big(-\,dz\,\overrightarrow{e_z}\big)`$
$`\displaystyle\quad\quad=\int_{DA} \overrightarrow{B}(\rho_{DA})\cdot\overrightarrow{dl}_{DA} + \int_{AB} \underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{AB}}_{\color{blue}{\quad\;=\,0}}`$
$`\displaystyle \quad\quad\quad +\int_{BC} \underbrace{\overrightarrow{B}(\rho_{BC})}_{\color{blue}{=\,0}}\cdot\overrightarrow{dl}_{BC} + \int_{CD}\underbrace{\overrightarrow{B}\cdot\overrightarrow{dl}_{CD}}_{\color{blue}{\quad\;=\,0}}`$
<br>
$`\displaystyle\quad\quad = \int_{DA}\big(B_z(\rho_{DA})\overrightarrow{e_z}\big)\cdot\big(-\,dz\,\overrightarrow{e_z}\big)`$
<br>
$`\displaystyle\quad\quad\quad\quad = \int_{z=z_0+h}^{z=z_0} B_z(\rho_{DA})\,dz`$
$`\displaystyle\quad\quad = \int_{z=z_0+h}^{z=z_0} B_z(\rho_{DA})\,dz`$
<br>
$`\displaystyle\quad\quad\quad\quad = \Big[ B_z(\rho_{DA})\times z\Big]_{z_0+h}^{z_0}`$
$`\displaystyle\quad\quad = \Big[ B_z(\rho_{DA})\times z\Big]_{z_0+h}^{z_0}`$
<br>
*$`\displaystyle\quad\quad\quad\quad\mathbf{\boldsymbol{ = -\, h\; B_z(\rho_M)}}`$*
*$`\displaystyle\quad\quad\mathbf{\boldsymbol{ = -\, h\; B_z(\rho_M)}}`$*
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment