Commit c3f57b97 authored by Claude Meny's avatar Claude Meny

Update cheatsheet.fr.md

parent bf08d5a5
Pipeline #15653 canceled with stage
......@@ -609,12 +609,32 @@ $`\quad\boldsymbol{\mathbf{=\color{brown}{2\,A\cdot cos\Big(\dfrac{\varphi_1-\va
* Pour exprimer l'onde en notation réelle, il faut **décomposer l'onde complexe** en ses *parties réelle et imaginaire* :
<br>
$`\color{blue}{\scriptsize{\quad\text{Rappel : }e^{\,i\,a} = cos (a) + i\,sin (a)}}`$
$`\color{blue}{\scriptsize{\quad\text{et pour simplifier l'écriture, posons :}}}`$
$`\color{blue}{\scriptsize{\quad\ cos (a) = "c\,a" \text{ , et } sin (a) = "s\,a"}}`$
$`\color{blue}{\scriptsize{\quad\text{et pour simplifier l'écriture, posons la notation :}}}`$
$`\color{blue}{\scriptsize{\quad\ cos\,(a) = "ca" \text{ , et } sin\,(a) = "sa"}}`$
<br>
$`\quad =A\;\[ (c\,\alpha\;+\;i\,s\,\alpha) \cdot (c\,\varphi_1\;+\;i\,s\,\varphi_1\;+\;c\,\varphi_2\;+\;i\,s\,\varphi_2)\,]`$
$`\quad =A\cdot(c\alpha\,+\,i\,s\alpha) \cdot (c\varphi_1\,+\,i\,s\varphi_1\,+\,c\varphi_2\,+\,i\,s\varphi_2)`$
<br>
$`\quad =A\;\big[ (c\,\alpha\;+\;i\,s\,\alpha) \cdot \big(\,(c\,\varphi_1\;+\;c\,\varphi_2)\;+\; i\,(s\,\varphi_1\;+\;s\,\varphi_2)\,\big)\big]`$
$`\quad =A\cdot(c\,\alpha\;+\;i\,s\,\alpha) \cdot \big[\,(c\varphi_1\,+\,c\varphi_2)\;+\; i\,(s\varphi_1\,+\,s\varphi_2)\,\big]`$
<br>
$`\color{blue}{\scriptsize{\left| \begin{align} \quad &cos(a+b)=cos(a)\,cos(b)-sin(a)\,sin(b)\\
&cos(a-b)=cos(a)\,cos(b)+-sin(a)\,sin(b)\end{align}`$
$`\color{blue}{\scriptsize{ \Longrightarrow cos(a+b)+cos(a-b)=2\,cos(a)\,cos(b)`$
$`\color{blue}{\scriptsize{ \text{En posant } p=a+b \text{ et } q=a-b ,`$
$`\color{blue}{\scriptsize{ \text{nous obtenons } a = (p+q)\,/\,2 \text{ et } b = (p-q)\,/\,2.`$
$`\color{blue}{\scriptsize{ \text{Nous retrouvons ainsi } cos(p) + cos(q) = 2\,\dfrac{p+q}{2}\,\dfrac{p-q}{2}`$
<br>
\right\}\Longrightarrow\\
\quad\quad cos^2(a)=cos(a)cos(a)=\dfrac{1}{2}[cos(a+a)+cos(a-a)]\\
\quad\quad\quad\quad=\dfrac{1}{2}[1 + cos(2a)]}}`$
<br>
$`\quad =A\;\big[ (c\,\alpha\;+\;i\,s\,\alpha) \cdot \big(\,(c\,\varphi_1\;+\;c\,\varphi_2)\;+\; i\,(s\,\varphi_1\;+\;s\,\varphi_2)\,\big)\big]`$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment