Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
cc16cbb5
Commit
cc16cbb5
authored
Oct 06, 2019
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
suite
parent
70997813
Pipeline
#564
failed with stage
in 21 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
3 deletions
+17
-3
cheatsheet.en.md
...ace/02.plane-refracting-surface-overview/cheatsheet.en.md
+17
-3
No files found.
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md
View file @
cc16cbb5
...
@@ -169,11 +169,25 @@ You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previous
...
@@ -169,11 +169,25 @@ You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previous
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction equation (equ. 1).
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction equation (equ. 1).
*
Image focal length $
`\overline{OF'}`
$ : $
`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`
$
<br>
*
Image focal length $
`\overline{OF'}`
$ : $
`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`
$
<br>
(equ.1)$
`\Longrightarrow\dfrac{n_{eme}}{\overline{SF'}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`
$$
`\Longrightarrow\overline{SF'}=\dfrac{n_{eme}\cdot\overline{SC}}{n_{eme}-n_{inc}}`
$
(equ.1)$
`\Longrightarrow\dfrac{n_{eme}}{\overline{SF'}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`
$
$
`\Longrightarrow\overline{SF'}=\dfrac{n_{eme}\cdot\overline{SC}}{n_{eme}-n_{inc}}`
$
(equ.4)
*
Object focal length $
`\overline{OF}`
$ : $
`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`
$
<br>
*
Object focal length $
`\overline{OF}`
$ : $
`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`
$
<br>
(equ.1) $
`\Longrightarrow-\dfrac{n_{inc}}{\overline{SF}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`
$$
`\Longrightarrow\overline{SF}=-\dfrac{n_{inc}\cdot\overline{SC}}{n_{eme}-n_{inc}}
(equ.1) $
`\Longrightarrow-\dfrac{n_{inc}}{\overline{SF}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`
$
`
$
$
`\Longrightarrow\overline{SF}=-\dfrac{n_{inc}\cdot\overline{SC}}{n_{eme}-n_{inc}}`
$
(equ.5)
!!!!
*ADVISE*
:
<br>
!!!! Memory does not replace understanding. Do not memorise (equ.4) and (equ.5)), but understand
!!!! the definitions of the object and image focal points, and know how to find these two equations
!!! from the conjuction equation for a spherical refracting surface.
!!!!
!
*NOTE*
:
<br>
! An optical element being convergent if the image focal point is real,
! so if $
`\overline{OF}>0`
$ (with optically axis positively oriented in the direction of the light propagation),
! you can deduce from (equ.4)) that is spherical refracting surface is convergent if and only if its center
! of curvature C is in the mmedium of highest refractive index.
!
##### 2 - Thin spherical refracting surface representation
##### 2 - Thin spherical refracting surface representation
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment