Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Courses
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
6
Issues
6
List
Board
Labels
Milestones
Merge Requests
4
Merge Requests
4
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
M3P2
Courses
Commits
cc65a0bf
Commit
cc65a0bf
authored
Oct 05, 2022
by
Claude Meny
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update cheatsheet.fr.md
parent
2f83b047
Pipeline
#13703
canceled with stage
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
22 additions
and
6 deletions
+22
-6
cheatsheet.fr.md
...70.combinaisons-of-operators/20.overview/cheatsheet.fr.md
+22
-6
No files found.
12.temporary_ins/08.grad-div-rot/70.combinaisons-of-operators/20.overview/cheatsheet.fr.md
View file @
cc65a0bf
...
...
@@ -52,6 +52,18 @@ PRINCIPALES COMBINAISONS
*
Définition de l'opérateur laplacien scalaire :
$
`\mathbf{\Delta=div\big(\overrightarrow{grad}\big)}`
$
*
Utilité en physique :
*
équation d'onde (ou équation de d'Alembert) :
$
`\Delta\,\phi-\dfrac{1}{\mathscr{v}^2}\dfrac{\partial^2 \phi}{\partial t^2}=0`
$
*
équation de Poisson :
$
`\Delta\,\phi-f=0\quad`
$, avec $
`f`
$ champ scalaire.
*
éuqtaion de Laplace :
$
`\Delta\,\phi=0`
$
*
Expression en coordonnées cartésiennes :
$
`\Delta\,\phi=\dfrac{\partial^2 \phi}{\partial x^2}+\dfrac{\partial^2 \phi}{\partial y^2}+\dfrac{\partial^2 \phi}{\partial z^2}`
$
et expression avec l'opérateur nabla $
`\nabla`
$ :
$
`\Delta\,\phi=\overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,\phi`
$
---
...
...
@@ -66,9 +78,9 @@ PRINCIPALES COMBINAISONS
*
Expression en coordonnées cartésiennes de base unitaire $
`(\vec{e_x}\,,\,\vec{e_y}\,,\,\vec{e_z})`
$ :
$
`\Delta\,\overrightarrow{U}=\left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial
x^2}+\dfrac{\partial^2 U_x}{\partial x
^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial
x^2}+\dfrac{\partial^2 U_y}{\partial x
^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial
x^2}+\dfrac{\partial^2 U_z}{\partial x
^2}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial
y^2}+\dfrac{\partial^2 U_x}{\partial z
^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial
y^2}+\dfrac{\partial^2 U_y}{\partial z
^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial
y^2}+\dfrac{\partial^2 U_z}{\partial z
^2}
\end{array}\right)`
$
et expression avec l'opérateur nabla $
`\nabla`
$ :
$
`\Delta\,\overrightarrow{U}=\left(\begin{array}{l}
...
...
@@ -85,7 +97,11 @@ PRINCIPALES COMBINAISONS
*
<details
markdown=
1
>
<summary>
Expressions en coordonnées cylindriques et sphériques
</summary>
*
dans la base cylindrique unitaire $
`(\vec{e_{\rho}}\,,\,\vec{e_{\phi}}\,,\,\vec{e_z})`
$ :
$
`\Delta\,\overrightarrow{U}=\left(\begin{array}{l}
\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial x^2}+\dfrac{\partial^2 U_x}{\partial x^2}\\
\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x^2}+\dfrac{\partial^2 U_y}{\partial x^2}\\
\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial x^2}+\dfrac{\partial^2 U_z}{\partial x^2}
\end{array}\right)`
$
*
dans la base sphérique unitaire $
`(\vec{e_r}\,,\,\vec{e_{\theta}}\,,\,\vec{e_{\phi}})`
$ :
</details>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment